

ROBA-stop[®]

www.**Mayr**[®].com

K.800.V09.EN

Your Advantages When Using ROBA-stop®

ROBA-stop[®] brakes attract customers because of their decided advantages in relation to operational safety and ease of maintenance.

For most applications, the enclosed structural shape can provide high functional brake safety without requiring additional protective measures.

The product's high reliability further improves the functional safety and increases the efficiency of the entire machine or system in which it is used.

The sensitive braking torque adjustment shows its value when exact positioning is required or when drives are to be adapted to changing production procedures. It simplifies production procedure optimization immensely, increases production, maximises flexibility and improves product quality.

A further, outstanding characteristic of the ROBAstop[®] brake is the central wear re-adjustment. This minimises the danger of adjustment errors, simplifies maintenance, saves time and maintenance costs and therefore also reduces machine downtimes.

Your Customized Solution - Our Universal Brake

Wide Variety of Application Possibilities for ROBA-stop[®] safety brake

- **ROBA-stop®** safety brakes offer a complete range of the many and various designs needed for different applications. Nearly 30 years of experience with spring applied safety brakes and detailed knowledge of the multiple demands on electrical power transmission technology support our program. Our tried and tested technology and our continual advances with regard to user-specific optimization of our palette of structural shapes guarantee the perfect brake for each individual application.
- ROBA-stop[®]-positioning brakes provide high positioning and repetitive accuracy even at high switching frequencies. Sensitive adjustment of the braking torque is possible. This structural shape can be adapted to many different applications using different armature disks.
- ROBA-stop[®]-holding brakes can reach very high braking torques. They are suitable for holding masses or loads without friction work, although braking at low speeds with low friction work in suitable application conditions is also permitted.
- ROBA-stop®-tacho brakes feature a centering recess and tapped holes on the back of the brake for mounting a tacho-generator. This brake also allows exact positioning with high repetitive accuracy using its sensitive braking torque adjustment.
- ROBA-stop[®]-tacho peak load brakes have the same basic functions as the tacho brake. They are, however, additionally equipped with an extremely strong armature disk which permits high friction work.
- ROBA-stop[®]-peak load brakes come in two further variations. These are both equipped with an extremely strong armature disk for high friction work. The design with an open distance ring dissipates brake heat very quickly into the surrounding area. The design with a closed distance ring is used when high friction work must be absorbed and when higher protection against outer influences is required.

□ **ROBA-stop[®]-sealed** and

ROBA-stop[®]-S comply with Protection IP67. They are fully enclosed, sealed and protected against corrosion.

Contents

	Page
ROBA-stop [®]	
Torque range: 1.1 to 1250 Nm	
Summary of constructional designs	4
Function – Installation Example	6
Data Sheets	7 – 22
• ROBA-stop [®] - positioning brake (Size 2)	7
• ROBA-stop [®] - positioning brake (Sizes 3 -	11) 8
ROBA-stop [®] - holding brake	10
ROBA-stop [®] - tacho brake	12
 ROBA-stop[®] - peak load brake 	14
ROBA-stop [®] - peak load brake	10
PORA stop [®] table pook load brake	10
BOBA-stop [®] - tacho peak load blake BOBA-stop [®] - sealed	10
BOBA-stop [®] - S (Sizes 8 – 10)	20
• ROBA-stop [®] - S (Size 11)	22
Tachnical Explanations	04 24
Short Description Installation	24 - 31
Brake Dimensioning	29
Calculation Example	27
Friction Power Diagrams	28
Switching Times	31
Electrical Connection and Wiring	31
Electrical Accessories	33 – 42
Half-wave- and bridge rectifiers	
Type 02000.6	34
 ROBA[®] - switch Type 01700.2 	35
 ROBA[®] - switch Type 017.110.2 	36
• ROBA [®] - switch 24 V Type 018.000.2	37
• ROBA [®] - switch 24 V Type 018.100.2	38
• ROBA [®] - brake-checker Type 028.100.2	39
• ROBA [®] - multiswitch Type 019.100.2	40
Spark Quenching Unit Type 070.000.6	41
ROBA [®] -SBCplus Type 021.100.2	42
Guidelines	43
ROBA-stop [®] -M The robust, cost-effective motor brake	23

Torque range: 2 to 1600 Nm

Summary of Constructional Designs ROBA-stop®

ROBA-stop®- positioning brake Size 2	Braking torque: 1.1 Nm Size 2 Type 800.450	 Design with a central brake spring and a friction lining rotor. Hand release and flange plate available on request as additional parts.
	Dudling to	
ROBA-stop [®] - positioning brake	Sizes 3 to 11 Type 8041	 For braking and for exact positioning. Consistent repetitive accuracy, even at higher switching frequencies. The braking torque can be sensitively adjusted using adjusting screws. Most application requirements can be met by means of different armature disks.
ROBA-stop [®] - holding brake	Braking torque: 5 to 1250 Nm Sizes 3 to 11 Type 820.61	 The holding brake reaches a higher braking torque than the positioning brake. It is suitable for holding masses or loads without friction work. Braking at low speeds with low friction work is sometimes possible on request. We recommend operation with the fast acting rectifier ROBA®-switch (see pages 35 – 40, 42).
POPA stan [®] taska braka	Braking torquo:	The taske brake bas a fixed distance ring and
ROBA-stop [®] - tacho brake	Sizes 3 to 11 Type 8341	 The factor brake has a fixed distance fing and, on the back of the coil carrier, a centering recess as well as three tapped holes. The centering recess is centered with the outer diameter of the distance ring. This simplifies the attachment of tacho-generators.
		Page 12
ROBA-stop [®] - peak load brake	Braking torque: 50 to 800 Nm Sizes 7 to 11 Type 863.41	 Heat is dissipated efficiently by the high-strength armature disk and the open threaded distance ring. The peak load brake can therefore absorb a very high amount of friction work e.g. on EMERGENCY STOP. In normal switching operation, the brake functions in the same way as a positioning brake.
ROBA-ston [®] -neak load braka	Braking torque:	The neak load brake can absorb very high friction work
with closed distance ring	Sizes 7 to 11 Type 866.41	 The peak load brake can absorb very high includit work e.g. on EMERGENCY STOP via the high-strength armature disk. In normal switching operation, the brake functions in the same way as a positioning brake. The closed threaded distance ring guarantees protection against ambient influences together with good heat dissipation.

Summary of Constructional Designs ROBA-stop®

ROBA-stop [®] - tacho peak load brake	Braking torque: 50 to 800 Nm Sizes 7 to 11 Type 883.41	 Friction work is absorbed efficiently e.g. on EMERGENCY STOP by the high-strength armature disk and the closed distance ring, meaning that heat is dissipated efficiently. A centering recess and three tapped holes on the back of the coil carrier make attachment of the tacho-generator easy.
ROBA-stop [®] -sealed	Braking torque: 3 to 26 Nm Sizes 3 to 6 Type 80418.3	 This design is completely enclosed and sealed by a cover. It complies with Protection IP67.
ROBA-stop®-S	Braking torque: 100 to 800 Nm Sizes 8 to 11 Type 856.41	 Corrosion-resistant, sealed design used for extreme ambient conditions. It complies with Protection IP 67.

Additional Parts

Flange plate		Cover plate	
	If no suitable friction surface is available customer-side for the brake linings, our flange plate can be used.		The brake is enclosed by the cover plate and complies with Protection IP54. This function has been TÜV- (German Technical Inspectorate) approved in several tests.
Hand Release		Terminal box	
	This function is used for mechanical release of the ROBA- stop [®] brake when the magnetic coil is de-energised (e.g. on power failure).		The terminal box serves as an interface for the supply cable and for housing the terminal, a spark quenching unit or a rectifier.

ROBA-stop® electromagnetic safety brake

Function

ROBA-stop[®] brakes are spring applied, electromagnetic safety brakes.

Spring applied function:

In de-energised condition, helical springs (11) press against the armature disk (5). The rotor (35) friction linings (8), which are connected via a toothed hub (1) with the drive shaft, are clamped between the armature disk (5) and the brake mounting surface.

Electromagnetic function:

If the coil (9) is energised, a magnetic field is built up which attracts the armature disk (5) to the coil carrier (2), thereby releasing the rotor (35) with the friction linings (8). The brakes are released if voltage is applied.

Safety brake function:

If the brake is de-energised, it is closed, thereby complying with the relevant safety demands e.g. on power failure or on EMERGENCY STOP.

Installation Example

ROBA-stop®: Application in a high rack warehouse

Hoist drives and traction drives on narrow aisle material handling systems are equipped with ROBA-stop[®] brakes. The ROBA-stop[®] positioning brake at the rear of the drive motor brakes the drive at slow speeds exactly at the required position. The ROBA-stop[®]-peak load brake on the hoist motor usually provides the same functions during normal operation – braking at slow speeds and exact positioning. This brake is additionally able to brake safely at high speeds and with downward-moving loads in case of EMERGENCY STOP or power failure. It is capable of absorbing extremely high friction work and of dissipating it quickly into the surrounding area.

Total Quality Management

Product Quality

Every delivery which leaves our firm has been subjected to a careful quality inspection, meaning that you are able to rely 100 % on $mayr^{\oplus}$ products. If required, we pre-adjust our clutches and brakes accurately to the requested values and confirm the **product characteristics with an Inspection Report.**

Quality Management

mayr[®] uses the term quality to describe its products and services. Certification of our quality management confirms the quality-consciousness of our employees at every level of the company.

Our integrated management system is certified according to DIN EN ISO 9001:2008 (Quality) and DIN EN ISO 14001 (Environment) and complies with the OHSAS 18001/ OHRIS (Occupational Health and Safety) demands.

ROBA-stop®- positioning brake Type 800.45_.0 Size 2

Type 800.450.0 without accessories

Type 800.455.0

with flange plate and hand release

Hand release

U

We reserve the right to make dimensional and constructional alterations.

h

Technical data			Size 2
Braking torque 1)	M _N	[Nm]	1.1
Electrical power	P ₂₀	[W]	12
Max. speed 2)	n _{max}	[rpm]	7000
Weight		[kg]	0.4

The robust and simplified form of the ROBA-stop®-brake Size 2 guarantees problem-free installation and reliability in operation

To ensure compact overall dimensions, the wear re-adjustment and braking torque adjustment are not included in the design.

In contrast to the other ROBA-stop® brakes, the braking force is generated by a central spring.

ווס	mer	ISIO	ns [mn			S	ze 2						
			Ød	min		DIN	6885	5/1	6					
Bores Ød							5/1	10						
	sore	5	øa	nax	Sp	ecial	keyw	ay	11 ³⁾					
				Pre	efer	red bo	ores I	-17		9	; 10			
-		-		-		-			-	-	-	-	-	
а	b	С	D	D	2 h8	F	f	G ^{H8}	Н	h	κ	K ₁	L	
0.15	20	4.5	58	5	69	10	2.5	17	7 60 5 6 6 28					
		-	-			-	-	-	-	-	-	-		
L ₂	I	М	R	r		s	т	u	v	Z	:	z	Z ₃	

The rotor and hub toothing guarantee reliable braking torque transmission and prevent all but minimal torsional backlash between the hub and the rotor.

If no suitable counter friction surface for the friction lining rotor is available customer-side, our flange plate can be used.

The hand release is used for mechanical release of the brake.

The brake can easily be supplied with DC voltage using our comprehensive range of electrical accessories.

Design as tacho-generator brake available on request.

Order	Nu	mber												
2	/	8	0	0.	4	5		0	/		/		/	
\bigtriangleup							\bigtriangleup			\bigtriangleup		\bigtriangleup		\bigtriangleup
Size 2					without a F	ccessories lange plate	0 1		Vol	tage ⁴⁾ [VD0 ±10 %	C]	Bore Ø d ^{H7}		Keyway acc.
				Flange	Ha e plate / ha	and release and release	3 5			24 104	(Dimensions page 7)		DIN 6885/1

Example: 2 / 800.451.0 / 104 / 10 / 6885/1

1) Braking torque tolerance: +40 % / -20 %,

other braking torques available on request

2) Higher speeds on request

3) Over Ø10 special keyway: width b = 4 JS9 , depth t = 1.2 $^{+0.1}$

4) Standard voltages [VDC]: 24; 104

Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

Type 80_.410.3

without accessories

your reliable partner

ROBA-stop[®]- positioning brake Type 80_.41_._ Sizes 3 – 11 **Type 80_.414.3** with flange plate and cover plate

Technical data			Size									
					5	6	7	8	9	10	11	
Braking torque 1)	M _N	[Nm]	3	6	12	26	50	100	200	400	800	
Electrical power	P ₂₀	[W]	17	24	33	50	70	87	102	134	196	
Max. speed ²⁾	n _{max}	[rpm]	6000	5000	4800	4000	3800	3400	3000	3000	3000	
Weight		[kg]	0.6	0.95	1.8	3.1	5.4	9.4	15.5	30	55	

This brake is an electromagnetic safety brake for braking and exact positioning. A high repetitive accuracy is guaranteed, even at high switching frequencies.

Two different armature disks are available to cope with different demands on friction work and on brake switching times.

Standard armature disk:

Short attraction time (brake release), longer drop-out time from power switch-off to the point at which the braking torque comes into effect. Solid structural shape allows high friction work absorption.

Fast acting armature disk:

This disk has the same characteristics as the standard armature disk; however, it has a slightly longer attraction time but a much shorter drop-out time.

The electrical switching and the type of power supply have a large influence on the switching times. Our wide range of electrical accessories allows a simple DC voltage brake supply connection (see pages 33 - 42).

Order Number 1 8 0 4 / / \triangle \triangle \triangle \triangle \triangle \triangle \triangle Without additional Voltage ⁴⁾ [VDC] Size Standard 0 Bore Keyway parts Ø d H7 armature disk 0 ±10 % acc. 3 Fast acting Flange plate 4 1 DIN 6885/1 24 (Dimensions armature disk 2 Cover plate 2 5 104 DIN 6885/2 page 9) Hand release 3) 3 6 DIN 6885/3 180 Flange plate/cover plate 4 7 207 Flange plate/hand release 3) 5 8 9 Cover plate/hand release 3) 6 Terminal box with terminal 1 Flange plate/cover plate/hand release 3) 7 10 3 Cable 11 4 Terminal box with half-wave rectifier 5 Terminal box with bridge rectifier 6 Terminal box with spark quenching unit

Dimensio	no Francis	1		Size									
Dimensio	ns [mm	U I	3	4	5	6	7	8	9	10	11		
	Ød _{min}	DIN 6885/1	8	10	10	15	20	25	25	25	30		
Ī		DIN 6885/1	11	13	18	23	30	45	47	57	76		
Bores Ø	Ød _{max}	DIN 6885/2	12 ⁵⁾	-	-	-	-	-	-	-	-		
		DIN 6885/3	-	15	20	25	32	-	50	60	80		
	Pre	eferred bores H7	10; 11; 12	12; 15	15; 20	20; 25	25; 30	30; 40	40; 45	45; 50	60; 70		

					Size				
	3	4	5	6	7	8	9	10	11
Α	64	64	64	64	79.5	79.5	79.5	79.5	79.5
а	0.2	0.2	0.25	0.25	0.35	0.35	0.4	0.4	0.5
В	77	77	77	77	92.5	92.5	92.5	92.5	92.5
b	22	26	35	40	48	68	75	90	120
С	36	36	36	36	42	42	42	42	42
C ₁	58	58	58	58	66.5	66.5	66.5	66.5	66.5
C ₂	29	29	29	29	45.5	45.5	45.5	45.5	45.5
С	8	8	9	10.5	16.5	18	18	25	30
D	72	86	104.5	131.5	146	183	201	255	330
D_2	79	98	114	142	165	199	220	275	360
F	48.3	55.8	68.2	84.6	96.8	117.8	125.6	158	-
F,	104.3	111.8	133.2	158.6	191.8	210.3	245.6	427	-
f	6	6	8	10	12	14	15	15	-
G ^{H7}	21.9	26.9	30.9	38.9	50.9	73.9	80.4	90	129
Н	86.3	93.8	115.2	136.1	169.3	181.3	208.6	390	-
H,	19	21	22.5	27.5	38	38	50	65	-
h	6	7	8	8	8	10	12	14	16
К	6	5	6	8	8	12	9	12	24
K,	5	8	8	10	10	12	12	18	18
L	30.2 6)	32.27)	39.3	43.2	58.2	66.7	74.3	96.3	116.3

					Size				
	3	4	5	6	7	8	9	10	11
L,	38.2	40.2	47.3	51.2	61.2	69.7	77.2	99.3	119.3
	15	20	20	25	30	35	35	50	60
•		PI	ease ob	serve th	ne load	on the s	shaft or	key!	
М	58	72	90	112	124	156	175	215	280
M ₁	58	72	89	112	124	156	175	215	280
Ν	102	109	118.5	132	151.5	170	179	206	243.5
0	1.5	2.5	2.5	3.5	3.5	2	2	2	2
р	3.5	5.1	5.1	6.1	6.8	5.3	5.9	5.9	7
R	50	62.5	79.5	99	110.5	139	158	188	253
r	25	32	40	45	60	77	83	94	128
S	3xM4	3xM4	3xM5	3xM6	3xM6	3xM8	6xM8	6xM8	6xM12
т	17	19	25	27	36	38	47	56	74
U	60.5	75	91	115.5	129	161	175	215	-
u	6.5	7	9	11.5	13.5	19	21.5	29	-
v	1	1	1	1.5	1.5	1.5	2	2	2
У	33°	32°	32°	32°	30°	30°	30°	30°	22.5°
z			3x1	20°			6x60°	6x60°	6x60°
z	98°	98°	105°	90°	90°	90°	90°	90°	90°
Z ₃	33°	32°	33°	33°	30°	30°	30°	30°	22.5°

Braking torque tolerance: +40 % / -20 %, other braking torques available on request
 Higher speeds on request

3) A rotating hand release is used as a hand release for Size 11 (dimensions on request)

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038
5) Width b = 4 ^{JS9}, depth t = 1.2 ^{+0.1}
6) Fixing screws protruding 3.2 mm

7) Fixing screws protruding 2.2 mm

your reliable partner

Technical data			Size									
rechnical data			3	4	5	6	7	8	9	10	11	
Braking torque 1)	M _N	[Nm]	5	10	22	48	90	180	360	620	1250	
Electrical power	P ₂₀	[W]	17	24	33	50	70	87	102	134	196	
Max. speed ²⁾	n _{max}	[rpm]	6000	5000	4800	4000	3800	3400	3000	3000	3000	
Weight		[kg]	0.6	0.95	1.8	3.1	5.4	9.4	15.5	30	55	

The holding brake is designed to hold large masses or loads without friction work.

Braking at low speeds with low friction work can be made possible, but if this is required, the application conditions should first be discussed with the manufacturer.

A higher braking torque is achieved by placing more pre-tension on the brake springs located at the external pole of the magnetic part.

A standard hand release for Sizes 9 – 11 cannot be supplied due to the high spring forces. Special hand release available on request.

The brake can easily be connected to a DC voltage supply via our comprehensive range of electrical accessories (see pages 33 – 42).

We recommend operation with the fast acting rectifier ROBA®-switch (see pages 35 - 40, 42).

Order Number

	/	8	2	0		6	1			/		/		/	
\bigtriangleup								\bigtriangleup	\bigtriangleup		\bigtriangleup		\bigtriangleup		\bigtriangleup
Size 3 4 5 6 7				Fl Flang Cove	wit ange p ge plate	hout acc Flai Cc Hand late / cc / hand	cessories nge plate over plate release ³⁾ over plate release ³⁾	0 1 2 3 4 5 6			Voltage ⁴⁾ [VDC] ±10 % 24 104 180 207		Bore Ø d ^{H7} (Dimensions page 11)		Keyway acc. DIN 6885/1 DIN 6885/2 DIN 6885/3
9 10 11			Flange pla	ate / cove	er plate	e / hand	release ³⁾	7	1 3 4 5 6	ד כ ד ד ד	Ferminal box with Cable Ferminal box with Ferminal box with Ferminal box with	h teri h hal h brid h spa	minal If-wave rectifi dge rectifier ark quenching	er g ur	nit

We reserve the right to make dimensional and constructional alterations.

Dimonoior		1					Size				
Dimension	is [mm]		3	4	5	6	7	8	9	10	11
	Ød _{min}	DIN 6885/1	8	10	10	15	20	25	30	30	30
		DIN 6885/1	11	13	18	23	30	45	47	57	76
Bores	Ød _{max}	DIN 6885/2	12 ⁵⁾	-	-	-	-	-	-	-	-
		DIN 6885/3	-	15	20	25	32	-	50	60	80
	Pref	erred bores H7	10; 11; 12	12; 15	15; 20	20; 25	25; 30	30; 40	40; 45	45; 50	60; 70

					Size				
	3	4	5	6	7	8	9	10	11
Α	64	64	64	64	79.5	79.5	79.5	79.5	79.5
а	0.2	0.2	0.25	0.25	0.35	0.35	0.4	0.4	0.5
В	77	77	77	77	92.5	92.5	92.5	92.5	92.5
b	22	26	35	40	48	68	75	90	120
С	36	36	36	36	42	42	42	42	42
C ₁	58	58	58	58	66.5	66.5	66.5	66.5	66.5
C ₂	29	29	29	29	45.5	45.5	45.5	45.5	45.5
С	8	8	9	10.5	16.5	18	18	25	30
D	72	86	104.5	131.5	146	183	201	255	330
D_2	79	98	114	142	165	199	220	275	360
F	48.3	55.8	68.2	84.6	96.8	117.8	-	-	-
F ₁	104.3	111.8	133.2	158.6	191.8	210.3	-	-	-
f	6	6	8	10	12	14	-	-	-
G ^{H7}	21.9	26.9	30.9	38.9	50.9	73.9	80.4	90	129
н	86.3	93.8	115.2	136.1	169.3	181.3	-	-	-
H,	19	21	22.5	27.5	38	38	-	-	-
h	6	7	8	8	8	10	12	14	16
К	6	5	6	8	8	12	9	12	24
K,	5	8	8	10	10	12	12	18	18
L	30.2 ⁶⁾	32.27)	39.3	43.2	58.2	66.7	74.3	96.3	116.3

					Size				
	3	4	5	6	7	8	9	10	11
L,	38.2	40.2	47.3	51.2	61.2	69.7	77.2	99.3	119.3
	15	20	20	25	30	35	35	50	60
		PI	ease ob	serve th	ne load	on the s	shaft or	key!	
М	58	72	90	112	124	156	175	215	280
M ₁	58	72	89	112	124	156	175	215	280
Ν	102	109	118.5	132	151.5	170	179	206	243.5
ο	1.5	2.5	2.5	3.5	3.5	2	2	2	2
р	3.5	5.1	5.1	6.1	6.8	5.3	5.9	5.9	7
R	50	62.5	79.5	99	110.5	139	158	188	253
r	25	32	40	45	60	77	83	94	128
S	3xM4	3xM4	3xM5	3xM6	3xM6	3xM8	6xM8	6xM8	6xM12
т	17	19	25	27	36	38	47	56	74
U	60.5	75	91	115.5	129	161	-	-	-
u	6.5	7	9	11.5	13.5	19	-	-	-
v	1	1	1	1.5	1.5	1.5	2	2	2
У	33°	32°	32°	32°	30°	30°	30°	30°	22.5°
z			3x1	20°			6x60°	6x60°	6x60°
z	98°	98°	105°	90°	90°	90°	90°	90°	90°
Z ₃	33°	32°	33°	33°	30°	30°	30°	30°	22.5°

1) Braking torque tolerance: +40 % / -20 %,

other braking torques available on request

2) Higher speeds on request

3) Standard hand release for Sizes 9-11 not possible

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038
5) Width b = 4 ^{JS9}, depth t = 1.2 ^{+0.1}
6) Fixing screws protruding 3.2 mm

7) Fixing screws protruding 2.2 mm

Type 83_.411.3

with flange plate

Technical data							Size				
			3	4	5	6	7	8	9	10	11
Braking torque 1)	M _N	[Nm]	3	6	12	26	50	100	200	400	800
Electrical power	P ₂₀	[W]	17	24	33	50	70	87	102	134	196
Max. speed ²⁾	n _{max}	[rpm]	6000	5000	4800	4000	3800	3400	3000	3000	3000
Weight		[kg]	0.6	0.95	1.8	3.1	5.4	9.4	15.5	30	55

The tacho brake has a fixed distance ring as well as a centering recess and three tapped holes on the rear side of the coil carrier. The centering recess is centered with the outer diameter of the distance ring.

The tacho-generator, the encoder or other components can be mounted via an intermediate flange. This flange must be manufactured according to the connection dimensions of the brake and the components, which are to be mounted.

When selecting a component to be mounted, the technical parameters and influences of the brake, such as the speed, the steady-state temperature, stray magnetic fields around the brake etc., must be taken into consideration by the customer.

The brake can easily be connected to a DC voltage supply via our comprehensive range of electrical accessories (see pages 33 - 42).

Order Number

	/	8 3	-		4	1		·	/	/	/	/
\bigtriangleup			1	\bigtriangleup			\bigtriangleup	\bigtriangleup	\triangle		\bigtriangleup	\bigtriangleup
Size 3 4 5 6 7		Stand armature Fast ac armature	dard disk ting disk	0 2 Flange	Without Fla Hand plate/hand	additional parts ange plate I release ³⁾ I release ³⁾	0 1 3 5		Voltage ⁴⁾ [VE ±10 % 24 104 180 207)C]	Bore Ø d ^{H7} (Dimensions page 13)	Keyway acc. DIN 6885/1 DIN 6885/2 DIN 6885/3
8 9 10 11				Term Te Terminal	Termir inal box wit erminal box box with s	nal box with th half-wave with bridge park quenc	terminal Cable rectifier rectifier hing unit	1 3 4 5 6				

Dimonoio	no [mm	1					Size				
Dimensio	ns [mm	1	3	4	5	6	7	8	9	10	11
	Ød _{min}	DIN 6885/1	8	10	10	15	20	25	25	25	30
		DIN 6885/1	11	13	18	23	30	45	47	57	76
Bores	Ød _{max}	DIN 6885/2	12 ⁵⁾	-	-	-	-	-	-	-	-
	DIN 6885/		-	15	20	25	32	-	50	60	80
	Preferred bores H7			12; 15	15; 20	20; 25	25; 30	30; 40	40; 45	45; 50	60; 70

					Size				
	3	4	5	6	7	8	9	10	11
Α	64	64	64	64	79.5	79.5	79.5	79.5	79.5
а	0.2	0.2	0.25	0.25	0.35	0.35	0.4	0.4	0.5
В	77	77	77	77	92.5	92.5	92.5	92.5	92.5
b ^{H7}	22	26	35	40	48	68	75	90	120
С	36	36	36	36	42	42	42	42	42
C ₁	58	58	58	58	66.5	66.5	66.5	66.5	66.5
C_2	29	29	29	29	45.5	45.5	45.5	45.5	45.5
С	8	8	9	10.5	16.5	18	18	25	30
D	72	86	104.5	131.5	146	183	201	255	330
D _{3 g7}	78.5	97.5	113.5	141.5	164.5	198	219	274	358
D _{7 h6}	85	105	122	150	175	210	230	285	370
е	8.5	8.5	9.5	10	10	13	15	17	19
F	48.3	55.8	68.2	84.6	96.8	117.8	125.6	158	-
F ₁	104.3	111.8	133.2	158.6	191.8	210.3	245.6	427	-
f	6	6	8	10	12	14	15	15	-
н	86.3	93.8	115.2	136.1	169.3	181.3	208.6	390	-
H,	19	21	22.5	27.5	38	38	50	65	-
h	6.5	6.5	7.5	8	8	10	12	14	16
h,	6	10	10	10	10	10	10	10	13
Κ	6	5	6	8	8	12	9	12	24
K,	5	8	8	10	10	12	12	18	18
L	30.2 ⁶⁾	32.27)	39.4	43.2	58.3	66.8	74.4	96.4	116.4
L,	38.2	40.2	47.3	51.2	61.2	69.7	77.2	99.3	119.3

Braking torque tolerance: +40 % / -20 %, other braking torques available on request
 Higher speeds on request

3) A rotating hand release is used as a hand release for Size 11 (dimensions on request)

	3	4	5	6	7	8	9	10	11			
	15	20	20	25	30	35	35	50	60			
•		Pl	ease ob	serve th	ne load	on the s	shaft or	key!				
М	58	72	90	112	124	156	175	215	280			
M,	58	72	89	112	124	156	175	215	280			
M ₂	29	35	41	52	61	88	100	112	145			
Ν	102	109	118.5	132	151.5	170	179	206	243.5			
R	50	62.5	79.5	99	110.5	139	158	188	253			
r	25	32	40	45	60	77	83	94	128			
S	3xM4	3xM4	3xM5	3xM6	3xM6	3xM8	6xM8	6xM8	6xM12			
S ₁	3xM3	3xM4	3xM4	3xM4	3xM5	3xM5	3xM6	3xM6	3xM8			
T ₁	15	16	20	23	34	38	40	52	77.5			
U	60.5	75	91	115.5	129	161	175	215	-			
u	6.5	7	9	11.5	13.5	19	21.5	29	-			
Х	84.5	104.5	121.5	149.5	-	-	-	-	-			
х	4	4	4.5	5	-	-	-	-	-			
У	33°	32°	32°	32°	30°	30°	30°	30°	22.5°			
Ζ			3x1	20°			6x60°	6x60°	6x60°			
Z ₁ ^{H7}	23.5	28.5	32.5	40.5	52.5	75.5	82.5	92	131			
z	98°	98°	105°	90°	90°	90°	90°	90°	90°			
Z ₁	8	8	8	9	9	10	15	15	15			
Z ₂	22°	22,5°	15°	30°	45°	60°	0°	0°	0°			
Z ₃	33°	32°	33°	33°	30°	30°	30°	30°	22,5°			

4) Standard voltages [VDC]: 24; 104; 180; 207

Permitted voltage tolerance: $\pm 10\%$ acc. DIN IEC 60038 5) Width b = 4 ^{JS9}, depth t = 1.2 ^{+0.1} 6) Fixing screws protruding 3.2 mm

7) Fixing screws protruding 2.2 mm

Technical data					Size		
rechnical data			7	8	9	10	11
Braking torque ¹⁾	M _N	[Nm]	50	100	200	400	800
Electrical power	P ₂₀	[W]	70	87	102	134	196
Max. speed ²⁾	n _{max}	[rpm]	3800	3400	3000	3000	3000
Weight		[kg]	6	10.4	17	33	61

The peak load brake can be used in normal switching operation for braking and exact positioning. Additionally, it is designed to absorb extremely high friction work which may occur, for example, during EMERGENCY STOP.

Several peak loads occurring in short succession can be dealt with problem-free by the brake.

The openings in the distance ring allow removal of the occurring friction dust, additional heat dissipation via convection and surface radiation as well as comfortable checking on the brake rotor or the air gap.

The brake can easily be connected to a DC voltage supply via our comprehensive range of electrical accessories (see pages 33 – 42).

Order Number

	/	8	6	3	. 4	1			/		/		/	
\bigtriangleup							\triangle	\bigtriangleup		\bigtriangleup		\triangle		\triangle
Size 7 8 9 10 11				Fla Flang	withou H ange plate e plate / h or plate / h	t accessories Flange plate Cover plate and release ³⁾ of cover plate and release ³⁾	0 1 2 3 4 5 6			Voltage ⁴⁾ [VD0 ±10 % 24 104 180 207	2]	Bore Ø d ^{H7} (Dimensions page 15)		Keyway acc. DIN 6885/1 DIN 6885/3
			Flange pl	ate / cove	er plate / h	and release ³	7	1 3 4 5 6	T C T T T	ērminal box wi Cable ērminal box wi ērminal box wi ērminal box wi	th ter th ha th bri th sp	rminal If-wave rectifi idge rectifier park quenching	ier g un	it

Dimensia	no Inem	.1			Size		
Dimensio	ons [mm	IJ	7	8	9	10	11
	Ød _{min}	DIN 6885/1	20	25	25	25	30
Deres	(Å)	DIN 6885/1	30	45	47	57	76
Dores	Ø0 _{max}	DIN 6885/3	32	-	50	60	80
	Pre	ferred bores H7	25; 30	30; 40	40; 45	45; 50	60; 70

			Size		
	7	8	9	10	11
Α	79.5	79.5	79.5	79.5	79.5
а	0.35	0.35	0.4	0.4	0.5
В	92.5	92.5	92.5	92.5	92.5
b	48	68	75	90	120
С	42	42	42	42	42
C ₁	66.5	66.5	66.5	66.5	66.5
C ₂	45.5	45.5	45.5	45.5	45.5
с	16.5	18	18	25	30
D	146	183	201	255	330
D_2	165	199	220	275	360
D_4	166	199	220	276	360
F	96.8	117.8	125.6	158	-
F,	191.8	210.3	245.6	427	-
f	12	14	15	15	-
G ^{H7}	50.9	73.9	80.4	90	129
н	169.3	181.3	208.6	390	-
H_{2}	48	49	63	85	-
h	8	10	12	14	16
K4	8.2	10.8	11.3	12.2	22.2

			Size		Size									
	7	8	9	10	11									
K ₅	10.2	10.8	19.3	18	26.2									
L_4	68.2	77.7	87.3	116.3	138.3									
L ₅	71.2	80.7	90.2	119.3	141.3									
	30	35	35	50	60									
	Please observe the load on the shaft or key!													
М	124	156	175	215	280									
M ₁	124	156	175	215	280									
Ν	151.5	170	179	206	243.5									
0	3.5	2	2	2	2									
р	6.8	5.3	5.9	5.9	7									
R	110.5	139	158	188	253									
r	60	77	83	94	128									
S	3xM6	3xM8	6xM8	6xM8	6xM12									
U	129	161	175	215	-									
u	13.5	19	21.5	29	-									
у	30°	30°	30°	30°	22.5°									
Z	3x120°	3x120°	6x60°	6x60°	6x60°									
z	90°	90°	90°	90°	90°									
Z ₃	30°	30°	30°	30°	22.5°									

 Braking torque tolerance: +40 % / -20 %, other braking torques available on request
 Higher speeds on request
 A rotating hand release is used as a hand release for Size 11 (dimensions on """) request)

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

15

and cover plate

Technical data			Size								
			7	8	9	10	11				
Braking torque ¹⁾	M _N	[Nm]	50	100	200	400	800				
Electrical power	P ₂₀	[W]	70	87	102	134	196				
Max. speed ²⁾	n _{max}	[rpm]	3800	3400	3000	3000	3000				
Weight		[kg]	6	10.4	17	33	61				

The peak load brake can be used in normal switching operation for braking and exact positioning. Additionally, it is designed to absorb high friction work which may occur, for example, during EMER-GENCY STOP.

Peak loads occurring in short succession can be dealt with problem-free by the brake.

The peak load brake is protected by the closed distance ring against dust and dirt. The brake in connection with the cover plate corresponds to Protection IP54.

The brake can easily be connected to a DC voltage supply via our comprehensive range of electrical accessories (see pages 33 - 42).

Order number

Dimonoiono [mm]		Size								
Dimensions [mm]			7	8	9	10	11			
	Ød _{min}	DIN 6885/1	20	25	25	25	30			
Porco	Ød _{max}	DIN 6885/1	30	45	47	57	76			
Bores		DIN 6885/3	32	-	50	60	80			
	Preferred bores H7		25; 30	30; 40	40; 45	45; 50	60; 70			

			Size		
	7	8	9	10	11
Α	79.5	79.5	79.5	79.5	79.5
а	0.35	0.35	0.4	0.4	0.5
В	92.5	92.5	92.5	92.5	92.5
b	48	68	75	90	120
С	42	42	42	42	42
C ₁	66.5	66.5	66.5	66.5	66.5
C ₂	45.5	45.5	45.5	45.5	45.5
с	16.5	18	18	25	30
D	146	183	201	255	330
D_2	165	199	220	275	360
D_6	166	199	220	276	360
F	96.8	117.8	125.6	158	-
F,	191.8	210.3	245.6	427	-
f	12	14	15	15	-
G ^{H7}	50.9	73.9	80.4	90	129
Н	169.3	181.3	208.6	390	-
H₂	48	49	63	85	-
h	8	10	12	14	16
K4	8.2	10.8	11.3	12.2	22.2

	Size								
	7	8	9	10	11				
K ₅	10.2	10.8	19.3	18	26.2				
L_4	68.2	77.7	87.3	116.3	138.3				
L_{5}	71.2	80.7	90.2	119.3	141.3				
	30	35	35	50	60				
	F	lease observe	the load on t	he shaft or key	/!				
М	124	156	175	215	280				
M ₁	124	156	175	215	280				
Ν	151.5	170	179	206	243.5				
ο	3.5	2	2	2	2				
р	6.8	5.3	5.9	5.9	7				
R	110.5	139	158	188	253				
r	60	77	83	94	128				
S	3xM6	3xM8	6xM8	6xM8	6xM12				
U	129	161	175	215	-				
u	13.5	19	21.5	29	-				
У	30°	30°	30°	30°	22.5°				
Z	3x120°	3x120°	6x60°	6x60°	6x60°				
z	90°	90°	90°	90°	90°				
Z ₃	30°	30°	30°	30°	22.5°				

1) Braking torque tolerance: +40 % / -20 %,

other braking torques available on request

2) Higher speeds on request

3) A rotating hand release is used as a hand release for Size 11 (dimensions on request)

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

17

ROBA-stop®-tacho peak load brake Type 883.41_._ Sizes 7 – 11

approx. 400 mm at Size 7, approx. 600 mm at Sizes 8 to 11

Т,

Air gap "a

Type 883.410.3

without accessories

We reserve the right to make dimensional and constructional alterations.

С

🖊 0,1 A

Technical Data	Technical Data					Size					
	7	8	9	10	11						
Braking torque ¹⁾	M _N	[Nm]	50	100	200	400	800				
Electrical power	P ₂₀	[W]	70	87	102	134	196				
Max. speed 2)	n _{max}	[rpm]	3800	3400	3000	3000	3000				
Weight		[kg]	6	10.5	17.2	33.8	62.7				

Size **Dimensions** [mm] 7 8 9 10 11 DIN 6885/1 Ød_{min} 20 25 25 25 30 Bores DIN 6885/1 30 45 47 57 76 Ød_{max} DIN 6885/3 50 80 32 _ 60 Preferred bores H7 25; 30 30; 40 40; 45 45; 50 60; 70

			Size							
	7	8	9	10	11					
а	0.4	0.4	0.45	0.45	0.55					
С	16.5	18	18	25	30					
D	146	183	201	255	330					
D _{3 g7}	164.5	198	219	274	358					
h,	10	10	10	10	13					
K_4	8.2	10.8	11.3	12.2	22.2					
L_4	68.3	77.8	87.4	116.4	138.4					
	30	35	35	50	60					
•	Please o	Please observe the load on the shaft or key!								
М	124	156	175	215	280					
M ₁	124	156	175	215	280					

			Size		
	7	8	9	10	11
M ₂	61	88	100	112	145
R	110.5	139	158	188	253
r	60	77	83	94	128
S	3xM6	3xM8	6xM8	6xM8	6xM12
S ₁	3xM5	3xM5	3xM6	3xM6	3xM8
T ₂	44	49	53	72	99.5
Z	3x120°	3x120°	6x60°	6x60°	6x60°
Z ₁ ^{H7}	52.5	75.5	82.5	92	131
Z ₁	9	10	15	15	15
Z ₂	45°	60°	0°	0°	0°
Z ₃	30°	30°	30°	30°	22.5°

Order Number

	/	8	8	3		4	1		·	/	/,	/	/
\bigtriangleup								\bigtriangleup	\bigtriangleup		\bigtriangleup	\bigtriangleup	\bigtriangleup
Size 7					wi	thout ace Hand	cessories release ³⁾	0 3			Voltage ⁴⁾ [VDC] ±10 %	Bore Ø d ^{H7}	Keyway acc.
8 9 10 11				Te Term	ermina Term iinal bo	Termin I box wit hinal box ox with sp	al box wit h half-wav with bridg park quen	h termina Cable ve rectifie ge rectifie ching uni	l 1 e 3 r 4 r 5 t 6		24 104 180 207	(Dimensions page 18)	DIN 6885/1 DIN 6885/3

Example: 7 / 883.410.3 / 104 / 25 / 6885/1

1) Braking torque tolerance: +40 % / -20 %, other braking torques available on request

3) A rotating hand release is used as a hand release for Sizes 10 and 11 (dimensions on request)

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

2) Higher speeds on request

18

ROBA-stop®-sealed Type 80_.418.3 Sizes 3 – 6

Κ δD ВR Σ́ δD Σ Σ ō σ Ø Ø Ø mmi

Type 80_.418.3

Cable length: approx. 400 mm at Sizes 3 to 6

Technical Data		Size				
	3	4	5	6		
Braking torque 1)	M _N	[Nm]	3	6	12	26
Electrical power	P ₂₀	[W]	17	24	33	50
Max. speed ²⁾	n _{max}	[rpm]	6000	5000	4800	4000

This positioning brake design is completely enclosed and corresponds to Protection IP67 (TÜV- (German Technical Inspectorate) approved).

Installation of the sealing cover is simple.

An aluminium cover is screwed onto the pre-installed standard positioning brake.

The cable outlet is protected by a completely watertight screw connector.

The brake magnetic coil can easily be connected to a DC voltage supply via our comprehensive range of electrical accessories (see pages 33 - 42).

Order number

Special variations of this sealed brake which are suitable for a continuous shaft can be designed and produced on request.

We reserve the right to make dimensional and constructional alterations.

Dimensions [mm]			Size						
			3	4	5	6			
	$\mathbf{Ød}_{\min}$	DIN 6885/1	8	10	10	15			
s		DIN 6885/1	11	13	18	23			
ore	Ød _{max}	DIN 6885/2	12 ³⁾	-	-	-			
ш		DIN 6885/3	-	15	20	25			
Prefe		rred bores H7	10;11;12	12; 15	15; 20	20; 25			

		Si	ze				Si	ze	
	3	4	5	6		3	4	5	6
С ₁	24	25	30	33	М	58	72	90	112
D_2	79	98	114	142	M ₂	29	35	41	52
D_5	91	110	125	155	M ₃	48	55	60	75
κ	6	5	6	8	R	50	62.5	79.5	99
L	30.2	32.2	39.3	43.2	r	25	32	40	45
L_2	45	50	58	62	S	3xM4	3xM4	3xM5	3xM6
	15	20	20	25	\mathbf{Z}_4	8°	8°	15°	0°
I.	Please	observ	ve the lo	bad on	Z ₅	25°	24°	17°	32°
	l	ne snai	t or key	'!	Z ₆	30°	30.5°	30°	30°

1) Braking torque tolerance: +40 % / -20 %, other braking torques available on

request

2) Higher speeds on request 3) Width $b = 4^{JS9}$, depth $t = 1.2^{+0.1}$

4) Standard voltages [VDC]: 24; 104; 180; 207

Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

oruer	mu	inder											
	/	8	0		. 4	1	8		3	/		/	/
\triangle				\bigtriangleup					\bigtriangleup		\bigtriangleup	\bigtriangleup	\bigtriangleup
Size 3 4 5 6		arm F arm	Standard nature disk ast acting nature disk	0 2			Ca	ole	3		Voltage ⁴⁾ [VDC] ±10 % 24 104 180 207	Bore Ø d ^{H7} (Dimensions page 19)	Keyway acc. 5 DIN 6885/1 DIN 6885/2 DIN 6885/3

Example: 5 / 802.418.3 / 104 / 15 / 6885/1

ROBA-stop®-S

ROBA-stop[®]-S have two functions. During standard operation they work as holding brakes. When the drives have been switched off the brakes hold the system safely in position. During critical operational situations, e.g. with EMERGENCY STOP or power failure, ROBA-stop[®]-S are designed to absorb peak loads with high friction work. These brakes are designed for vertical and horizontal operations.

Dust and waterproof

Completely enclosed brake design corresponds to Protection IP67.

Permanent protection against corrosion

Protection IP67, a high-quality brake body primary coating, chrome or nickel-coated interior parts or use of rustproof steels ensure protection against corrosion.

Easy handling

Compact construction and small outer diameters mean easy brake handling.

Minimum maintenance requirements

Should the friction linings be worn, just readjust the air gap or replace the rotor with its friction linings.

Minimum operating expenses

High working reliability and low maintenance expenditure reduce the operating expenses of the brake to a minimum.

Condensation water inspection

Regular inspection is possible via a drain plug.

Rectifier

A rectifier integrated in the terminal box allows a brake connection to AC-supply. The magnetic coil is designed as a DC-coil.

Wear monitoring

An additional microswitch can be installed into the ROBA-stop®-S which monitors the wear on the friction linings.

Brake housing and integral terminal box

The one-piece cast iron housing with integrated terminal box is extremely robust and, therefore, protected against mechanical damages.

Anti-condensation heating

This heating system prevents conden-

sation water inside the brake. Its usage is especially recommended at tem-

peratures under zero degrees Celsius

By changing the number of springs,

the customer's requirements.

the braking torque can be adapted to

or in high air humidity.

Braking torgue

Optimum protection for electrical equipment

The electrical supply and the inspection and monitoring function microswitches are completely protected inside the cast terminal box.

Release monitoring

The ROBA-stop[®]-S is fitted with a microswitch for release monitoring. The microswitch emits a signal when the brake is opened.

Tacho attachment

The brake body can be fitted with a tacho attachment. If no tacho is used, the coil carrier is closed by a cover.

Emergency Hand Release

The seawater brake is fitted with an emergency hand release. The brake can be released mechanically via two screws (bracket hand release available on request).

Inspection without system downtimes

A threaded hole allows fast inspection of the air gap without dismantling the brake or system stoppage.

Motors with self-ventilation

In order to assemble the ROBA-stop[®]-S onto motors with continuous shafts on the B-bearing side, the closed standard-cover on the brake rear side is exchanged for the open cover with integrated radial shaft sealing ring.

20

ROBA-stop[®]- S Type 856.417._ Sizes 8 – 10

We reserve the right to make dimensional and constructional alterations.

Technical data				Size	
			8	9	10
Braking torque ¹⁾	M _N	[Nm]	100	200	400
Electrical newsr	P ₂₀	[W]	85	100	120
	ACH ²⁾	[W]	15	15	21
Max. speed	n _{max}	[rpm]	3400	3000	3000
Tightening torque Fixing screws	S	[Nm]	23	23	46
Weight with flange plate		[kg]	19	26	42

Dimor	noion	о Гто	~1				Size			£.
Dimer	ISION	s [m	nj			8	9	1	0	
		$\operatorname{Ød}_{\min}$	3)	DIN 688	85/1	25	25	2	25	
Bores		Q	3)	DIN 688	85/1	45	47	5	57	
		Dumax	_,	DIN 688	35/3	-	50	6	60	
Sizes	ØD	н	h,	L	L,	L ₂	3)	I,	I ₂	9
8	240	155	10	143.5	118	108	35	12	4	
9	270	167	10	138.5	128.5	118.5	35	18	4	

1) Braking torque tolerance: +40 % / -20 %, other braking torques available

on request 2) ACH = Anti-condensation heating, standard voltages [VAC]: 115; 230 3) Please observe the load on the shaft or key!

4) Standard voltages [VDC]: 24; 104; 180; 207 Permitted voltage tolerance: ±10 % acc. DIN IEC 60038

Sizes	ØD	н	h,	L	L,	L ₂	3)	I,	I_2	ØМ	\mathbf{OM}_1	Ν	S	S ₁	Ø٧	v	Z	Z ₁	z	Z ₁
8	240	155	10	143.5	118	108	35	12	4	100	100	109	6 x ø9	M6	46	6.5	130	85	5	5.5
9	270	167	10	138.5	128.5	118.5	35	18	4	110	100	109	8 x ø9	M6	50	6.5	140	85	5	6
10	310	185	10	152.0	148	138	50	21 ₋₁₀	4	128	100	109	8 x ø11	M6	66	2.0+10	160	85	5	9

Order number

	/ 8	5	6	. 4	4 1	7	-		/	/	/
\bigtriangleup								\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup
Size 8 9 10	Terminal	box:			with half- with b	with termir vave rectif ridge rectif	nal ier ier	1 4 5	Voltage ⁴⁾ [VDC] ±10 % 24 104	Bore Ø d ^{H7} (Dimensions page 21)	Keyway acc. DIN 6885/1 DIN 6885/3
	Options:	- A - M - O	nti-conde licroswite ther Type	ensatio ch for v es avail	n heating /ear monito able on req	ring uest			180 207		

Example: 9 / 856.417.4 / 104 / 30 / 6885/1

We reserve the right to make dimensional and constructional alterations.

Technical data				Size 11
Braking torque 1)		M _N	[Nm]	800
Electrical power		P ₂₀	[W]	268
Electrical power		ACH ²⁾	[W]	on request
Max. speed		n _{max}	[rpm]	3000
Tightoning torguo	Eixing corows	S	[Nm]	61
ngmening torque	T IXING SCIEWS	S ₂	[Nm]	122
Woight	with flange plate		[kg]	95
weight	without flange plate		[kg]	86

Din	nensi	ons [mm]			Siz	ze 11	1	Tolerar (other	nce: +40 ' braking to	% / -20 ' orques a	%, vailable c	on reques	3)P t 4)S	lease observ tandard volta	e the load on ages [VDC]: 1	the shaf 04; 180;	t or key! 207
Pore	~	Ø	d ³⁾	DIN 6	6885/1		55	2	2) ACH =	Anti-Cor	ndensatio	on heating	g,	P	ermitted volta	age tolerance	e ±10 %	
Bore	5	Ø	1 ³⁾	DIN 6	885/1		75		Stanua	iru voitag	es [vac]	. 115, 25	0	a	CC. DIN IEC C	00038		
$\mathbf{O} \mathbf{D}_{1}$	ØD	ØD ₁	Н	h	k	k ₂	L ₃	L ₄	1 ³⁾	I,	I ₃	ØМ	ØM ₂	Ν	S	S ₂	Ζ	z
150	450	435	217	25	24	17.5	169.1	194.1	115	40.8	10	400	400	106	6 x M12	8 x M16	350	6

Example: 11 / 856.415.5 /180 / 60 / 6885/1

ROBA-stop[®]-M The robust, cost-effective motor brake

Designs

- ROBA-stop[®]-M standard brake As a working brake it brakes from movement, and positions at the required point.
- ROBA-stop[®]-M holding brake Holds drives safely in position when they are not running and brakes from movement on EMERGENCY STOP.

On request ROBA-stop[®]-M safety brakes can also be delivered with UL approval.

ROBA-stop[®]-M safety brakes are also available in ATEX design according to the directive 2014/34/EU. (Please contact the manufacturer

separately for this).

Installation Example

ROBA-stop[®]-M safety brake on the B-bearing side of an electromotor. The design with flange plate is used if there is no suitable counterfriction surface for the brake linings available motor-side.

Tachnic	echnical Data and Dimensions								Size					
Technic		iensi	ons	2	4	8	16	32	60	100	150	250	500	1000
Braking	Standard brake ¹⁾	M _N	[Nm]	2	4	8	16	32	60	100	150	250	500	1000
torque	Holding brake ²⁾	M _N	[Nm]	4	8	16	32	64	100	180	250	450	800	1600
Shoff Ø	Standard brake		[mm]	8–15	10–15	11–20	14 – 25	19 – 30	22 – 35	24 – 45	30 – 50	40–60	50 - 80	75 – 90
Shart	Holding brake		[mm]	8–15	10–15	11–20	14 – 25	19–30	22 – 35	24 – 45	30 – 50	40 – 55	50 – 75	75 – 90
Broko	Outer Ø	ØD	[mm]	76	87	103	128	148	168	200	221	258	310	382
Diake	Length	L	[mm]	39	41.5	45.2	55.7	61.7	72.5	84	97	116	114	135

1) Tolerance +30 % / -10 % 2) Tolerance +40 % / -20 %

For detailed technical data and dimensions, please see catalogue: ROBA-stop®-M K.891.V__.

ROBA-stop® – Short Description Installation

Type 86_.41_._

Parts List

- (Only use mayr® original parts)
- 1 Hub
- 2 Coil carrier
- 5 Armature disk
- 6 Fast-acting peak-load armature
- 11 Brake spring
- 13 Fixing screw
- Set screw 14
- 29 Flange plate
- 30 Cover plate
- 31 Distance ring
- 35 Rotor
- 58

Lock washer

Hand release

- 16 Threaded bolt
- Restoring bolt 17
- Spherical button 18
- 19 Restoring spring
- 21 Locking nut
- 22 Hand release bracket

Installation is possible vertically or horizontally.

In the design with a mounted cover plate (30, Fig. 2, lower half), the brake is completely enclosed and corresponds to Protection IP54.

Fig. 1

Installation Conditions

- The eccentricity of the shaft end in relation to the mounting pitch circle must not exceed 0,2 mm (on brakes sizes 3 - 6) and on larger brakes, 0,4 mm.
- The positional tolerance of the threads for the cap screws (13, Fig. 2) must not exceed 0,2 mm.
- The axial run-out deviation of the screw-on surface to the shaft must not exceed the permitted axial run-out tolerance acc. DIN 42955. The reference diameter is the pitch circle diameter for securement of the brakes.

Larger deviations can lead to a drop in torgue, to continuous grinding of the rotor and to overheating.

- The rotor and brake surfaces must be oil and grease-free.
- · A suitable counter friction surface made of steel or grey cast iron must be provided for the rotor (35). Sharp-edged interruptions on the friction surfaces must be avoided.

If no suitable counter friction surface is available, our flange plate (29, Fig. 2, lower half) can be used.

Short Description

Please find a detailed installation description in the Installation and Operational Instructions for the product (also on www.mayr.com).

ROBA-stop[®] brakes are particularly easy to install:

- 1. Mount the hub (1) onto the shaft and secure it axially (e.g. using a locking ring).
 - Recommended tolerance for the shaft-hub connection H7 / k6. - Avoid too tight hub-shaft connections (particularly on maximum bores). They lead to the rotor (35) jamming on the hub (1) and therefore to brake malfunctions.
- 2. Push the rotor (35) onto the toothed hub (1) by hand.
- 3. Attach the brake onto the motor bearing shield or the machine wall using the fixing screws (13) to the tightening torque T_{A} (acc. Table 1, page 25).

Peak load brake

ROBA-stop® – Short Description Installation

Braking Torque

Definition

The braking torque stated in the Technical Data is the torque effective in the shaft train on slipping brakes, with a sliding speed of 1 m/s referring to the mean friction radius (acc. DIN VDE 0580).

Please observe on using the brake for different applications that braking torque deviations of up to approx. +40 % / -20 % can occur (if necessary, please contact the manufacturers).

The load torque on the machine should be max. 50 % of the given braking torque.

Adjustment

The ROBA-stop[®] brakes are set manufacturer-side to the braking torque stipulated on order. By turning the set screws (14, Fig. 2, page 24) to the left, the braking torque is reduced. By turning them to the right, the braking torque is increased.

When adjusting the braking torque, all set screws (14, Fig. 2, page 24) must be adjusted evenly.

If the braking torque is to be decreased to a larger extent, some springs (11, Fig. 2, page 24) must be removed. To do this, it is necessary to remove two springs which lie opposite to each other, to guarantee an even load on the armature disk (5).

Please order the respective Adjustment Diagrams from the manufacturer if changing the braking torque customer-side.

Hand Release Installation

The hand release is to be installed and set according to the Instructions.

When adjusting the locking nuts (21, Fig. 3), please observe that the restoring bolts (17) limit the armature disk (5) stroke in the direction of the brake.

The restoring bolts (17) may only be tightened using the locking nuts (21) so much that at least the adjustment dimension "x" acc. Table 1 and Fig. 3 remains between the armature disk (5) and the coil carrier (2). While doing this, please adjust both restoring bolts (17) evenly!

Fig. 3: Detail

Technical Data Installation	echnical Data – Installation						Si	ze				
			2	3	4	5	6	7	8	9	10	11
Nominal air gap	а	[mm]	0.15	0.2	0.2	0.25	0.25	0.35	0.35	0.4	0.4	0.5
Adjustment dimension	х	[mm]	0.8	1.0	1.1	1.2	1.6	1.4	1.5	1.5	2.0	-
Actuation angle Hand release	α	[°]	10	15	15	11	11	8	7	7	15	-
Release force	F	[N]	10	17	30	50	80	160	200	350	350	-
Tightening torque Fixing screws item 13	T _A	[Nm]	3	3	3	6	8	8	10	10	10	40

Table 1

Air Gap Adjustment

The working air gap between the armature disk (5) and the coil carrier (2) is set manufacturer-side to the nominal dimension "a", Fig. 2, page 24 and Table 1, page 25.

However, as the rotor (35) wears down, the air gap "a" increases. The nominal air gap can be re-established by turning the threaded distance ring (31).

Re-adjustment

1. Remove a sealing plug of the threaded distance ring (31). Measure the air gap before adjustment in de-energised conditions using a feeler gauge. The difference from the measured air gap to the nominal air gap "a" acc. Table 1 must be re-adjusted.

2. Loosen the fixing screws (13) and the lock washer (58).

3. Turn the threaded distance ring (31) anti-clockwise (facing direction towards the rear side of the brake).

Turning the distance ring (31) **one graduation line** on the engraved scale equals:

- an air gap re-adjustment of 0.05 mm
- on Sizes 3 to 6 for Types 80_.41_._ / 820.61_._ ,
- on Sizes 7 to 11 for Types 86_.41_._ ,
- an air gap re-adjustment of 0.1 mm
- on Sizes 7 to 11 for Types 80_.41_._ / 820.61_._

4. Tighten the fixing screws (13) (tightening torques acc. Table 1) and attach the lock washer (58).

5. Check the air gap, nominal air gap "a" acc. Table 1 must be given.

Re-adjustment can be repeated until the threaded distance ring (31) lies against the coil carrier (2) collar, Fig. 2, page 24. This contact prevents unpermitted wear on the rotor (35). Replace the rotor (35) if re-adjustment is no longer possible.

Maintenance

At specific intervals, the air gap between the armature disk and the coil carrier must be inspected and re-adjusted.

When the rotor has reached the maximum permitted degree of wear, it must be replaced.

Please make sure that on replacement the friction surfaces and brake linings are oil and grease-free.

Apart from this, the brake is maintenance-free.

ROBA-stop® – Brake Dimensioning

Brake Size Selection

1. Brake selection

M _{NA}	= -	9550 x P n	-	[Nm]
M _{erf.}	=	M _{NA}	$x K <_{-} M_{_N}$	[Nm]
t _v	= -	J x n 9.55 x M _v	-	[s]

J_1	=	$J_{2} x (\frac{n_{2}}{n_{1}})$	-) ²	[kgm²]
M	=	M _N + (-)* M _L	$(M_{L} < 0.5 \times M_{N})$	[Nm]

2. Inspection of thermic load

$$Q_{r} = \frac{J \times n^{2}}{182.4} \times \frac{M_{N}}{M_{v}}$$
[J]

The permitted friction work (switching work) $Q_{r zul.}$ or $Q_{rs zul.}$ per braking for the specified switching frequency can be taken from the friction-power diagrams (pages 28 – 30). If the friction work (switching work) per braking is known, the max. switching frequency can also be taken from the friction-power diagrams (pages 28 – 30).

3. Lifetime calculation

Z _{0.1}	= -	Q _{r 0.1}	-		[-]
Z _N	=	Z _{0.1}	х	V _N	[-]
Z	=	Z _{0.1}	х	V _a	[-]

Due to operating parameters such as sliding speed, pressing or temperature the **wear values** can only be considered **guideline values.**

Key:		
J	[kgm ²]	Mass moment of inertia
J_1	[kgm ²]	Reduced mass moment of inertia
K	[-]	Safety factor (1.5 – 3 x according to conditions)
$M_{_{NA}}$	[Nm]	Nominal torque on drive
${\rm M}_{\rm erf.}$	[Nm]	Required braking torque
M_v	[Nm]	Deceleration torque
ML	[Nm]	Load torque on system * sign in brackets (-) is valid if load is braked during downward movement
M_{N}	[Nm]	Nominal torque (Technical Data pages 7 – 22)
n	[rpm]	Speed
Р	[kW]	input power
t _v	[s]	Braking action
Q _r	[J]	Friction work present per braking
Q _{r 0.1}	[J]	Friction work per 0.1 mm wear (Table 2)
Q _{r ges.}	[J]	Friction work up to rotor replacement (Table 2)
Q _{r zul.}	[J]	Permitted friction work per braking (Diagrams 1, 3 - 5)
Q _{rs zul.}	[J]	Perm. friction work per braking on peak load (Diagram 2)
Q _N	[-]	Friction work up to re-adjustment (Table 2)
V _N	[-]	Wear factor up to re-adjustment (Table 2)
V_{g}	[-]	Wear factor for total wear (Table 2)
z	[braking/min.]	Number of brakings per minute
Z _N	[-]	Number of brakings up to re-adjustment
Z _{0.1}	[-]	Number of brakings up to 0.1 mm wear
Z	[-]	Total number of brakings

Friction Work / Wear Factor					Sizes									
					3	4	5	6	7	8	9	10	11	
	ROBA-stop®- positioning brake	Q _{r 0.1}	[10 ⁶ J]	6.0	7.0	11.0	17.9	29.4	33.3	46.6	57.5	76.9	111	
	ROBA-stop [®] - tacho brake	Q _{r 0.1}	[10 ⁶ J]	-	7.0	11.0	17.9	29.4	33.3	46.6	57.5	76.9	111	
Friction Work	ROBA-stop [®] - peak load brake	Q _{r 0.1}	[10 ⁶ J]	-	-	-	-	-	33.3	46.6	57.5	76.9	111	
per 0.1 mm	ROBA-stop®-tacho peak load brake	Q _{r 0.1}	[10 ⁶ J]	-	-	-	-	-	33.3	46.6	57.5	76.9	111	
wear	ROBA-stop [®] -sealed	Q _{r 0.1}	[10 ⁶ J]	-	7.0	11.0	17.9	29.4	-	-	-	-	-	
	ROBA-stop [®] -S	Q _{r 0.1}	[10 ⁶ J]	-	-	-	-	-	-	44	54.5	70	95	
Wear factor V,	ROBA-stop [®] - positioning brake	V _N	[-]	-	1.5	2	4.5	5	5	5	5	5	9	
Friction work Q _N	ROBA-stop [®] - peak load brake	V _N	[-]	-	-	-	-	-	5	5	5	5	9	
up to	ROBA-stop [®] -sealed	V _N	[-]	-	1.5	2	4.5	5	-	-	-	-	-	
re-adjustment	ROBA-stop [®] -S	Q _N	[10 ⁶ J]	-	-	-	-	-	-	132	272	420	475	
	ROBA-stop [®] - positioning brake	V _g	[-]	2.5	15	16.5	18	19.54	21	22.5	30	36	39	
Wear factor V	ROBA-stop [®] - tacho brake	V _g	[-]	-	2.5	3.5	4.5	5.5	6	6.5	9	12	13	
up to rotor repla- cement (for total wear)	ROBA-stop [®] - peak load brake	V _g	[-]	-	-	-	-	-	21	22.5	30	36	39	
	ROBA-stop [®] -tacho peak load brake	V _g	[-]	-	-	-	-	-	6	6.5	9	12	13	
	ROBA-stop [®] -sealed	Vg	[-]	-	15	16.5	18	19.54	-	-	-	-	-	
,	ROBA-stop [®] -S	Q _{r ges.}	[10 ⁶ J]	-	-	-	-	-	-	308	545	770	1900	

Table 2: Wear values (guideline values for n = 1500 rpm and mean friction work)

	vour reliable	nayr ® e partner		
BOBA-ston [®] – Calc	sulation Example			_
Data			╘╫╟╢	M _{L,1}
Electric motor input power input speed Mass moments of inertia: Motor V-belt disk	P = 3 kW $n_1 = 1400 rpm$ $J_M = 0.0068 kgm^2$ $J_K = 0.0035 kgm^2$	ROBA-stop® brake		V-belt disk J _k V-belt drive
Working machine Load torque Speed Mass moment of inertia Number of brakings per minute	$M_{L,2} = 50 \text{ Nm}$ $n_2 = 370 \text{ rpm}$ $J_2 = 0.3 \text{ kgm}^2$ z = 5 brakings/min	$\frac{M_{L,2}}{n_2}$ Fig. 4		Working machine J ₂
1. Brake selection				
Nominal torque on drive:	$M_{NA} = \frac{9550 \times 3}{1400}$	= 20.5	[Nm]	
Required braking torque: ROBA-stop [®] - positioning brake	$M_{erf.} = 20.5 \times K$ Size 6 with $M_N = 26$ Nm is select	<_ M _N	[Nm]	M _N see Tech. Data, page 8
Transmission:	$i = \frac{n_1}{n_2} =$	$\frac{1400}{370}$ = 3.8	[-]	
Calculation of the load torque $M_{L,1}$ referring to the motor shaft:	$M_{L,1} = \frac{M_{L,2}^2}{i} =$	$\frac{50}{3.8}$ = 13.1	[Nm]	
Deceleration torque:	$M_v = M_N + (-)^* M_{L, 1} =$	26 - 13.1 = 12.9	[Nm]	* The load torqueM _{L1} has an
The mass moment of inertia refer- ring to the motor shaft:	$\mathbf{J}_{red.} = \mathbf{J}_{M} + \mathbf{J}_{Br} + \mathbf{J}_{K} + \mathbf{J}_{2} \mathbf{x} \left(-\frac{\mathbf{r}}{\mathbf{I}} \right)$	n ₂ n ₁) ²	[kgm²]	J _{Br} see Table 3, page 27
	$\mathbf{J}_{\rm red.} = 0.0068 + 0.000199 + 0.000199 + 0.000000000000000000000000000000000$	$0035 + 0.3 \times (\frac{370}{1400})^2 = 0.031$	[kgm²]	
From this, the braking time can be calculated:	$\mathbf{t}_{\mathbf{v}} = \frac{\mathbf{J} \times \mathbf{n}}{9.55 \times \mathbf{M}_{\mathbf{v}}} = \frac{\mathbf{C}}{2}$	0.031 x 1400 9.55 x 12.9 = 0.35	[s]	
Please Observe: $t_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}}\left[s\right]$ refers only to the	e friction time of the brake. The switch	ing times are to be taken into considera	tion.	see Switching Times page 31, Table 4
2. Inspection of thermic load				
Friction work per braking: The thermic load is permitted.	$\mathbf{Q}_{r} = \frac{J \times n^{2}}{182.4} \times \frac{M_{N}}{M_{v}} = \frac{0.2}{M_{V}}$ $Q_{r} = 671 \text{ [J]} < Q_{rzul.}$	$\frac{.031 \times 1400^2}{182.4} \times \frac{26}{12.9} = 671$	[J]	Q_{rzul} see Diagram 1, page 28 $Q_{rzul} = 1500 J$ with $z = 5$ brakings/min (switching frequency= 300/h)
3. Lifetime calculation				
$Z_{0.1} = \frac{Q_{r \ 0.1}}{Q} =$	$\frac{29.4 \times 10^6}{671} = 43815 \text{ braking}$	gs up to 0.1 mm wear		Q _{r 0.1} see Table 2, page 26
$\mathbf{Z}_{\mathbf{N}} = \mathbf{Z}_{0.1} \mathbf{x} \mathbf{V}_{\mathbf{N}} =$	43 815 x 5 = 219 075 brakir	ngs up to re-adjustment		$V_{_N}$ see Table 2, page 26
$\mathbf{Z}_{g} = \mathbf{Z}_{0.1} \times \mathbf{V}_{g} = \frac{856145 \text{ brakings}}{5 \text{ brakings} / \text{min}} =$	43 815 x 19.54 = 856 145 brakir 171 229 min. = 2 854 hours	ngs up to total wear		V_{g} see Table 2, page 26

The rotor must be replaced after 2 854 operating hours.

Mass Moment of Inertia						Sizes							
Rotor + hub with d _{max}				2	3	4	5	6	7	8	9	10	11
ROBA-stop®- positioning brake	Types 800.450 / 8041	J_{R+H}	[10 ⁻⁴ kgm ²]	0.045	50.077	0.23	0.68	1.99	4.02	13.2	24.2	56.4	242
ROBA-stop [®] - holding brake	Types 820.61	J_{R+H}	[10 ⁻⁴ kgm ²]	-	0.077	0.23	0.68	1.99	4.02	13.2	24.2	56.4	242
ROBA-stop [®] - tacho brake	Types 8341	J_{R+H}	[10 ⁻⁴ kgm ²]	-	0.077	0.23	0.68	1.99	4.02	13.2	24.2	56.4	242
ROBA-stop [®] - peak load brake	Types 863.41 / 866.41	J_{R+H}	[10 ⁻⁴ kgm ²]	-	-	-	-	-	4.02	13.2	24.2	56.4	242
ROBA-stop®-tacho peak load bra	ke Types 883.41	J _{B+H}	[10 ⁻⁴ kgm ²]	-	-	-	-	-	4.02	13.2	24.2	56.4	242
ROBA-stop [®] -sealed	Types 800.418.3	J _{R+H}	[10 ⁻⁴ kgm ²]	-	0.077	0.23	0.68	1.99	-	-	-	-	-
ROBA-stop [®] -S	Types 856.41	$J_{\text{R+H}}$	[10 ⁻⁴ kgm ²]	-	-	-	-	-	-	17.9	33.7	84.8	360.6

Table 3

ROBA-stop® – Friction Power Diagrams

ROBA-stop®-positioning brake / ROBA-stop®-tacho brake

ROBA-stop®-peak load brake / ROBA-stop®-tacho peak load brake

ROBA-stop® – Friction Power Diagrams

ROBA-stop®-holding brake

ROBA-stop[®]-S Sizes 8 – 10

ROBA-stop® – Friction Power Diagrams

ROBA-stop® - S Size 11

Design example for a speed of 1250 rpm:

Permitted friction work $Q_{r_{zul.}}$ for 1250 rpm from diagram 5: 300 000 J. This value limits the permitted friction work $Q_{r_{zul.}}$ acc. diagram 4 for low switching frequencies (here up to 3.5 switchings per hour). The permitted friction work $Q_{r_{zul.}}$ reduces acc. diagram 4 with higher switching frequencies.

ROBA-stop® – Switching Times / Electrical Connection

Switching times

These values stated in the Tables 4 and 5 are mean values which refer to the nominal air gap and the nominal torque on a warm brake. The brake switching times are influenced by the temperature, by the type of quenching circuit and by the air gap between the armature disk and the coil carrier, which depends on the wear status of the linings.

Switching	Brake with standard armature			Size									
times			disk	2	3	4	5	6	7	8	9	10	11
Nominal torque		M _N	[Nm]	1.1	3	6	12	26	50	100	200	400	800
connection time	DC-side switching	t ₁	[ms]	13	20	26	46	78	100	200	250	400	500
connection time	AC-side switching	t ₁	[ms]	80	120	200	260	650	700	1000	1300	3000	3100
Separation time		t ₂	[ms]	20	25	30	40	60	80	100	150	200	300

Table 4

Switching	Brake with fast acting armature			Size										
times			disk	2	3	4	5	6	7	8	9	10	11	
Nominal torque		M _N	[Nm]	-	3	6	12	26	50	100	200	400	800	
connection time	DC-side switching	t ₁	[ms]	-	13	20	26	33	50	80	120	250	350	
connection time	AC-side switching	t ₁	[ms]	-	90	100	200	330	310	600	800	1800	2000	
Separation time		t ₂	[ms]	-	30	35	50	70	85	110	170	230	350	

Table 5

M_{Br} =

Key:

t2

- $M_{L} = Load torque$
- t₁ = Connection time
- t₁₁ = Response delay on connection

Braking torque

- Separation time
- U_N = Coil nominal voltage

Explanation of terms:

The **braking torque** (switching torque) is the **torque effective** in the shaft train on slipping brakes, with a sliding speed of 1 m/s referring to the mean friction radius (acc. DIN VDE 0580).

The **transmittable torque** is the largest torque, with which the closed brake can be loaded without slipping occurring.

Diagram 6:Torque-Time Diagram

Electrical Connection and Wiring

DC current is necessary for operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (±10 % tolerance). Operation can take place with alternating voltage using a rectifier or another suitable DC power supply. The connection possibilities can vary dependent on the brake equipment. Please follow the exact connections according to the Wiring Diagram.

The manufacturer and the user must observe the applicable regulations and standards (e.g. DIN EN 60204-1 and DIN VDE 0580). Their observance must be guaranteed and double-checked!

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Device Fuses

To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Switching Behaviour

The reliable operational behaviour of a brake is to a large extent dependent on the switching mode used. Furthermore, the switching times are influenced by the temperature and the air gap between the armature disk and the coil carrier (dependent on the wear condition of the linings).

Magnetic Field Build-up

When the voltage is switched on, a magnetic field is built up in the brake coil, which attracts the armature disk to the coil carrier and releases the brake.

• Field Build-up with Normal Excitation

If the magnetic coil is energised with nominal voltage, the coil current does not immediately reach its nominal value. The coil inductivity causes the current to increase slowly as an exponential function. Accordingly, the build-up of the magnetic field takes place more slowly and the braking torque drop (curve 1, Fig. below) is also delayed.

• Field Build-up with Overexcitation

A guicker drop in braking torgue is achieved if the coil is temporarily placed under a higher voltage than the nominal voltage, as the current then increases more quickly. Once the brake is released, it needs to be switched over to the nominal voltage (curve 2, Fig. below). The relationship between overexcitation and separation time t₂ is roughly indirectly proportional. This means that, using overexcitation voltage $\rm U_{o}$ (= doubled nominal voltage $\rm U_{N}$), the separation time t_o for release of the brake is halved.

The ROBA®-switch fast acting rectifier works on this principle.

Operation with overexcitation requires an inspection of :

- the required overexcitation time *
- as well as the RMS coil capacity ** with a cycle frequency higher than 1 cycle per minute.

* Overexcitation time t

Increased wear, and therefore an increasing air gap as well as coil heating lengthen the separation times t₂ for the brake. For this reason, at least double the separation time t, at nominal voltage must be selected as overexcitation time to on each brake size

** RMS coil capacity P

$P \leq P_N$

The coil capacity P must not be larger than P_N. Otherwise the coil may fail due to thermal overload.

Calculations:

Ρ

t

32

[W] RMS coil capacity dependent on switching frequency, overexcitation, reduction in capacity and duty cycle $P_0 x t_0 + P_H x t_H$

 P_{N} [W] Coil nominal capacity (catalogue values, Type tag) P_o [W] Coil capacity on overexcitation

$$P_{o} = \left(\frac{U_{o}}{U_{N}} \right)^{2} \times P_{N}$$

P_H [W] Coil capacity at reduced capacity 11

$$P_{H} = \left(\begin{array}{c} O_{H} \\ \hline \\ U_{N} \end{array} \right)^{2} \times P_{N}$$

ι _o	[S]	Overexcitation time
t _H	[s]	Time of operation with reduction in capacity
t _{off}	[s]	Time without voltage
t	[s]	Time of operation $(t_0 + t_H)$
T	[s]	Total time $(t_0 + t_H + t_{off})$
U	[V]	Overexcitation voltage (bridge voltage)
U _H	[V]	Holding voltage (half-wave voltage)
UÜ	[V]	Coil nominal voltage

For brakes, which do not require overexcitation, the holding voltage $U_{_{\!\!\!H}}$ may be lower than the nominal voltage $U_{_{\!\!N}}\!\!,$ e.g. on power reduction to reduce the coil temperature.

Magnetic field removal

AC-side Switching

The power circuit is interrupted in front of the rectifier. The magnetic field slowly reduces. This delays the rise in braking torque.

When switching times are not important, please switch ACside, as no protective measures are necessary for the coil and the switching contacts.

AC-side switching means low-noise switching; however, the brake engagement time is longer (approx. 6 - 10 times longer than with DC-side switching), use for non-critical braking times.

DC-side Switching

The power circuit is interrupted between the rectifier and the coil as well as mains-side. The magnetic field reduces extremely quickly. This causes a quick rise in braking torque.

When switching DC-side, high voltage peaks are produced in the coil, which can lead to wear on the contacts from sparks and to destruction of the insulation.

DC-side switching means short brake engagement times (e.g. for EMERGENCY STOP operation); however, louder switching noises.

Protection circuit

When using DC-side switching, the coil must be protected by a suitable protection circuit according to VDE 0580, which is integrated in mayr®-rectifiers. To protect the switching contact from consumption when using DC-side switching, additional protective measures may be necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operating current are sufficient. Depending on the application, the switching contact can also be protected by other protection circuits (e.g. mayr®-spark quenching unit), although this may of course then alter the switching times.

Electrical Accessories

For detailed information on our DC voltage modules, please go to: www.mayr.com

33

Half-wave and bridge rectifiers Type 02_.000.6

Application

Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA-quick®, ROBATIC®), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function

The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.

Electrical connection (Terminals)

- 1 + 2 Input voltage
- 3 + 4 Connection for an external switch for DC-side switching
- 5 + 6 Coil
- 7-10 Free nc terminals (only for Size 2)

Order Number / 0 2 0 0 0 6 . \triangle \triangle Sizes 4 Half-wave rectifier 1 up to 4 5 Bridge rectifier

Dimensions (mm)

Accessories: 60715:

Mounting bracket set for 35 mm rail acc. EN Artikel-Nr. 1803201.

Iecnnica	l data				Bridge rectifier			Half-wave rectifier						
Calculation ou	itput voltage				VDC = V	AC x 0.9		VDC = VA	AC x 0.45					
Туре					1/025	2/025	1/024	2/024	3/024	4/024				
Max. input vol	tage	±10 %	U _{AC}	[VAC]	230	230	400	400	500	600				
Max. output v	oltage		U _{DC}	[VDC]	207	207	180	180	225	270				
	+	≤ 50°C	I _{RMS}	[A]	2.5	2.5	3.0	4.0	4.0	4.0				
Output curren		at max. 85 °C	I RMS	[A]	1.7	1.7	1.8	2.4	2.4	2.4				
	II = 115 VAC	≤ 50 °C	P _N	[W]	260	260	-	-		-				
	O _{AC} = 113 VAO	up to 85 °C	P _N	[W]	177	177	-	-	-	-				
	LL – 230 VAC	≤ 50 °C	P _N	[W]	517	517	312	416	416	416				
Max.	0 _{AC} = 200 1710	up to 85 °C	P _N	[W]	352	352	187	250	250	250				
coil nominal	II = 400 VAC	≤ 50 °C	P _N	[W]	-		540	720	720	720				
capacity	C _{AC} = 400 W/O	up to 85 °C	P _N	[W]	-	-	324	432	432	432				
at	U = 500 VAC	≤ 50 °C	P _N	[W]	-		-	-	900	900				
		up to 85 °C	P _N	[W]	-	-	-	-	540	540				
U = 600 VAC		≤ 50 °C	P _N	[W]	-	-		-	-	1080				
		up to 85 °C	P _N	[W]	-	-	-	-	-	648				
Peak reverse	voltage			[V]	1600	1600	2000	1600	2000	2000				
Rated insulation	on voltage		U _{RMS}	[V _{RMS}]	320	320	500	500	630	630				
Pollution degr	ee (insulation coc	ordination)			1	1 1 1 1 1								
Device Fuses						To be included in the input voltage line.								
Recommende The microfuse cor fuses are used con integral l ² t must be	d microfuse switc rresponds to the max. rresponding to the actu e observed on selection	ching capacity H possible connection c ual capacities, the perm	apacity. If nitted limit		FF 3.15 A	FF 3.15 A	FF 4 A	FF 5 A	FF 5 A	FF 5 A				
Permitted limit	t integral		l²t	[A ² s]	40	40	50	100	50	50				
Protection						IP65 components, encapsulated / IP20 terminals								
Terminals				Cross-see	ction 0.14 -	1.5 mm² (AW	VG 26-14)							
Ambient temperature				[°C]		- 25 up to + 85								
Storage temperature				[°C]	- 40 up to + 85									
Conformity markings					UL, CE UL, CE UL, CE UL, CE CI									
Installation co	nditions				The instal heat diss	lation position pation and a	n can be us air convectio intens	er-defined. F n! Do not ins e heat!	Please ensure stall near to s	e sufficient sources of				

ROBA®-switch Type 017._00.2

Application

ROBA[®]-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop[®], ROBA[®]-quick, ROBATIC[®]) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-switch 017._00.2

- Consumer operation with overexcitation or power reduction
- Input voltage: 100 500 VAC
- Maximum output current I_{RMS}: 3 A at 250 VAC
- UL-approved

Function

The ROBA®-switch is used for operation at an input voltage of between 100 and 500 VAC, depending on the size. It can switch internally from bridge rectification output voltage to half-wave rectification output voltage. The bridge rectification time can be modified from 0.05 to 2 seconds by exchanging the external resistor (R_{ext}).

Electrical connection (Terminals)

- 1 + 2 Input voltage (fitted protective varistor)
- 3 + 4 Connection for external contact for DC-side switch-off
- 5 + 6 Output voltage (fitted protective varistor)
- 7 + 8 R_{ext} for bridge rectification time adjustment

Technical data

see Table 1
see Table 1
IP65 components, IP20 terminals,
IP10 R _{ext}
n 1.5 mm² (AWG 22-14)
- 25 °C up to + 70 °C
- 40 °C up to + 70 °C

ROBA®-switch Sizes, Table 1

				Si	ze		
			Type 01	7.000.2	Type 017.100.2		
			10	20	10	20	
Input voltage ±10 %	U _{AC}	[VAC]	100-250	200-500	100–250	200-500	
Output	U _{bridge}	[VDC]	90-225	180-450	90-225	180-450	
voltage	U _{half-wa-}	[VDC]	45-113	90-225	45–113	90-225	
Output current	ve						
at ≤ 45 °C	l _{eff}	[A]	2.0	1.8	3.0	2.0	
at max. 70 °C	l _{eff}	[A]	1.0	0.9	1.5	1.0	
Conformity			c RU us		c RL us	c RL us	
markings			CE	CE	CE	CE	

Order Number

CN[®]**US CE**189728 **CE**

Dimensions (mm)

Type 017.000.2

48.5

₽.

15

78 🖓

73,6

Type 017.100.2

64

54

4,5

3 4 5 6

69

Accessories: Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1802911

ROBA®-switch Type 017.110.2

Application

ROBA®-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-switch 017.110.2

- Integrated DC-side disconnection
- (shorter connection time t_1)
- Consumer operation with overexcitation or power reduction
- Input voltage: 100 500 VAC
- Maximum output current I_{RMS}: 1.5 A
- UL-approved

The ROBA[®]-switch with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function

The ROBA®-switch is used for operation at an input voltage of between 100 and 500 VAC, depending on the size. It can switch internally from bridge rectification U_{o} output voltage to half-wave rectification U_{H} output voltage. The bridge rectification time can be modified from 0.05 to 2 seconds by exchanging the external resistor (R_{ex}).

In addition, the ROBA®-switch features integrated DCside disconnection. In contrast to the usual DC-side disconnection, no further protective measures or external components are required. The DC-side disconnection is activated as a standard measure (terminals 3 and 4 are not wired) and causes short switching times on the electromagnetic consumer.

The integrated DC-side disconnection is deactivated by fitting a bridge between the terminals 3 and 4, and the coil is de-energised via the freewheeling diode. This has the advantages of gentler braking actions and quieter switching noise. However, this substantially lengthens the switching times (approx. 6 - 10x).

Electrical connection (Terminals)

- 1 + 2 Input voltage (fitted protective varistor)
- 3 + 4 Switching between DC and AC-side disconnection
- 5+6 Output voltage (fitted protective varistor)
- 7 + 8 R_{ext} for bridge rectification time adjustment

Technical data

Input voltage	see Table 1
Output voltage	see Table 1
Protection	IP65 components, IP20 terminals,
	IP10 R _{ext}
Terminal nom. cross-section	n 1.5 mm² (AWG 22-14)
Ambient temperature	-25 °C up to +70 °C
Storage temperature	-40 °C up to +70 °C

Dimensions (mm)

20

ROBA®-switch Sizes, Table 1

69

				Siz	ze	
				10	20	
Input voltage ±10 %		U	[VAC]	100 – 250	200 – 500	
Output voltage		U _o	[VDC]	90 – 225	180 – 450	
		U _H	[VDC]	45 – 113	90 – 225	
Output	at ≤ 45 °C	I _{RMS}	[A]	1.5	1.5	
current	at max. 70 °C	I _{RMS}	[A]	0.75	0.75	
Conformity markings				с 91) из С Е	° AL us C E	

ROBA®-switch 24V Type 018.000.2

Application

ROBA®-switch 24V fast switching modules are used to operate DC consumers with overexcitation or power reduction, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®), electromagnets, electrovalves, etc.

Fast switching module ROBA®-switch 24V 018.000.2

- Consumer operation with overexcitation or power reduction
- Integrated DC-side disconnection (shorter connection time t₁)
- Input voltage: 24 VDC
- Max. output current I_{RMS}: 2.5 A

CAUTION

The ROBA®-switch 24V with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function

The ROBA®-switch 24V units are used for an input voltage of 24 VDC. They can switch internally, meaning that the output voltage switches to holding voltage from the input voltage (= overexcitation voltage) via pulse-width modulation using 20 kHz. The overexcitation time and holding voltage can be switched.

Electrical Connection (Terminals)

- 1 Control input
- 2 + 3 Input voltage, ground
- 4 + 5 Input voltage +24V
- 6 Output voltage +
- 7 Output voltage -
- 8 + 9 Selection of overexcitation time
- 9 + 10 Selection ofholding voltage

Technical data

Input voltage U

Output voltage Uo
Output voltage U _H
Output current I _{BMS} at ≤ 45 °C
Output current I _{BMS} at max. 70 °C
Protection

Terminal nominal cross-section Ambient temperature Storage temperature 24 VDC (18 - 32 VDC) SELV/PELV Input voltage U, see Table 1 2.5 A 1.25 A IP65 components, IP20 terminals 1.5 mm² (AWG 22-14) -25 °C up to +70 °C -40 °C up to +70 °C

Order Number

Example:

Order number 1 / 018.000.2 and article number 8237581

Dimensions (mm)

Accessories: Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1802911

ROBA[®]-switch 24 V, Table 1

Article number	Overexcitation Time t _o [ms]		Holding voltage U _H [VDC]		
	Without	with	Without	with	
	Bridg	e 8+9	Bridge	9+10	
8237581	450	150	½ x U₁	²/₃ x U _I	

ROBA®-switch 24V Type 018.100.2

Application

ROBA®-switch 24V fast switching modules are used to operate DC consumers with overexcitation or power reduction, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®), electromagnets, electrovalves, etc.

Fast switching module ROBA®-switch 24V 018.100.2

- Consumer operation with overexcitation or power reduction
- Integrated DC-side disconnection (shorter connection time t.)
- Input voltage: 24 VDC
- Max. output current I: 5 A 5 A
- UL-approved

CAUTION

The ROBA®-switch 24V with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function

The ROBA®-switch 24V units are used for an input voltage of 24 VDC. They can switch internally, meaning that the output voltage switches to holding voltage from the input voltage (=overexcitation voltage) via pulse-width modulation using 20 kHz. The overexcitation time can be adjusted via a DIP switch to 150 ms, 450 ms, 1 s, 1.5 s and 2.15 s. The holding voltage can be adjusted via a further DIP switch to $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{2}{3}$ of the input voltage (equals 6 V, 8 V, 12 V and 16 V at an input voltage of 24 V).

In addition, the ROBA®-switch 24V features integrated DC-side disconnection. In contrast to the usual DC-side disconnection, no further protective measures or external components are required. The DC-side disconnection is activated in standard mode and causes short switching times on the electromagnetic consumer. This can, however, be deactivated by installing a bridge between terminals 7 and 8 in order to produce soft brakings and quieter switching noises. However, this substantially lengthens the switching times (approx. 6 - 10x).

Electrical Connection (Terminals)

- 2 + 3 Input voltage, ground
- 4 Control input
- 5 7 Input voltage + 24 VDC
- 8 + 9 Output voltage +
- 10 Output voltage -

Technical data

Input voltage U

Output voltage $U_{_{
m O}}$ Output voltage $U_{_{
m H}}$

Output current I_{RMS} at \leq 45 °C Output current I_{RMS} at max. 70 °C Protection Terminal nominal cross-section Ambient temperature Storage temperature 24 VDC +20 % / -10 % SELV/PELV Input voltage U₁ ¼, ¹/₃, ¹/₂, ²/₃ x U₁ ±20 % can be selected via a DIP switch 5.0 A 2.5 A IP00 1.5 mm² (AWG 22-14) -25 °C up to +70 °C -40 °C up to +70 °C

Dimensions (mm)

Accessories: Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1802911

ROBA[®]-brake-checker Type 028.100.2

Application

ROBA®-brake-checker monitoring modules are used to operate safety brakes with overexcitation while at the same time monitoring the condition.

Monitoring module ROBA®-brake-checker 028.100.2

- · Consumer operation with overexcitation or power reduction
- Controlled output voltage (on reduction)
- · Simple adjustment of holding voltage and overexcitation time via a DIP switch
- · Fast or slow switch off
- Brake condition recognition (release and drop-out recognition)
- Wear recognition and error recognition
- Wide input voltage range
- Maximum output current I_{BMS}: 10 A / 5 A
- Maximum overexcitation current I_o = 20 A / 10 A
- Automatic reduction of the holding voltage U

CAUTION

The ROBA[®]-brake-checker with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function

The ROBA®-brake-checker monitoring module is intended for use with an input voltage of 24 or 48 VDC. The module monitors the switching condition of the brake and emits a signal to provide information on the respective switching condition.

Critical conditions (line breakages, wear) can be recognised and the respective signal can be emitted via the warning signal output.

Switching of the output voltage to a controlled holding voltage (see "Table 1") is available as an option.

After a brake-specific overexcitation time period, the integrated automatic mode adjusts to the pre-set reduction voltage. The automatic mode can be switched off using a DIP switch.

Electrical Connection (Terminals)

Power Terminal

- Supply voltage +24 VDC / +48 VDC 1
- 2 Output voltage +
- 3 Output voltage -
- Supply voltage 0 VDC 4

Signal Terminal

- Supply voltage 0 VDC 1
- Switch-off fast/slow (input) 2
- 3 Signal output (release monitoring)
- 24 V (auxiliary voltage for bridging) 4
- 5 Supply voltage +24 VDC
- 6 Start (input)
- Error output max. 300 mA 7

Technical Data

Input voltage	see Table 1
Output voltage	see Table 1
Protection	IP65 components, IP20 terminals,
	IP20 DIP switch
Terminal nominal cross-sec	tion
Power terminals	4 mm², (AWG 20-12)
Signal terminals	1.5 mm², (AWG 30-14)
Ambient temperature	-25 °C up to +70 °C
Storage temperature	-40 °C up to +105 °C

Dimensions (mm)

ROBA®-brake-checker Sizes, Table 1

			Size					
				24 \	2 /DC	ء 48 \	1 /DC	
Input voltage, power terminal	SELV/PELV	U	[VDC]	18 -	- 30	42 -	- 54	
Input voltage, signal terminal		U	[VDC]		2 - 19)	4 - 28)		
	±5 %	U_{o}	[VDC]	Input voltage U _I			U,	
Output voltage	±5 %	U _H	[VDC]	6 12	8 16	12 24	16 32	
	at ≤ 45 °C	I _{RMS}	[ADC]	10.0		5	5.0	
Output current	at max. 70 °C	I _{RMS}	[ADC]	5.0		2.5		
Conformity markings				C	E	C	E	

Order Number

ROBA®-multiswitch Type 019._00.2

Application

ROBA®-multiswitch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA®-quick, ROBATIC®) as well as electromagnets, electrovalves, etc.

Fast acting rectifier ROBA®-multiswitch 019._00.2

- Consistently controlled output voltage in the entire input voltage range
- · Consumer operation with overexcitation or power reduction
- Input voltage: 100 500 VAC
- Max. output current I_{RMS}: 2 A; 4.5 A
- UL-approved

ROBA[®]-multiswitch units are not suitable for all applications, e.g. use of the ROBA[®]-multiswitch when operating noise-damped brakes is not possible without taking additional measures. The product's suitability should be checked before use.

The ROBA®-multiswitch is used for operation at an input voltage of between 100 and 500 VAC, depending on the size. After switchon, it emits the rectified bridge voltage for 50 ms and then adjusts automatically to a pre-programmed overexcitation voltage. After the overexcitation time ends, it regulates to the permanently programmed holding voltage. For the overexcitation voltage and holding voltage values of the standard design, please see Table 1. On special designs, deviating values are possible.

The overexcitation time can be adjusted via a DIP switch to 150 ms, 450 ms, 1 s, 1.5 s and 2 s.

Electrical connection (Terminals)

- 1 + 2 Input voltage (fitted protective varistor)
- 3 + 4 Connection for external contact for DC-side switch-off
- 5 + 6 Output voltage (fitted protective varistor)

Technical data

Input voltage see Table 1	
Frequency	50 – 60 Hz
Output voltage see Table 1	
Output current	
Type 019.100.2	2 A bei ≤ 45 °C; 1 A at max. 70 °C
Type 019.200.2	4.5 A bei \leq 45 °C; 2.25 A at max. 70 °C
Protection	IP65 components, IP20 terminals,
	IP20 DIP switch
Terminal nom. cross-section	on 1.5 mm² (AWG 22-14)
Ambient temperature	-25 °C up to +70 °C
Storage temperature	-40 °C up to +70 °C

Example:

Order number 20 / 019.100.2 and article number 8225580

Dimensions (mm)

rail acc. EN 60715: Article No. 1802911

Mounting bracket set for 35 mm

ories

ROBA[®]-multiswitch Sizes, Table 1

Sizes	Туре	Input voltage *	Output voltage *		Article number
		±10 % acc. EN 50160	±10 %		
			U ₀ **	U_**	
		[VAC]	[VDC]	[VDC]	
10	019.100.2	100 – 275	90	52	8186586
	019.100.2	200 – 500	180	104	8185591
	019.200.2	200 – 500	180	104	8242954
20	019.100.2	230	207	30	8225580
	019.200.2	230	207	30	8237887
	019.100.2	300 – 500	240	52	8220914

* On special designs, deviating values are possible. The values stated on the Type tag are decisive.

** U_{0} : overexcitation voltage; U_{H} : Holding voltage

Spark quenching unit Type 070.000.6

Application

Reduces spark production on the switching contacts occurring during DC-side switch-off of inductive loads.

- Voltage limitation according to VDE 0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2 4 compared to freewheeling diodes.

Function

The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of > 3 mm are suitable for this purpose.

Electrical Connection (Terminals)

- 1 (+) Input voltage
- Input voltage 2 (–)
- 3 (-) Coil
- 4 (+) Coil
- 5 Free nc terminal
- 6 Free nc terminal

Technical data

Input voltage	max. 300 VDC, max. 615 V _{peak}
	(rectified voltage 400 VAC,
	50/60 Hz)
Switch-off energy	max. 9 J / 2 ms
Power dissipation	max. 0.1 Watt
Rated voltage	
nc terminals	250 V
Protection	IP65 components, IP20 terminals
Ambient temperature	-25 °C up to +85 °C
Storage temperature	-40 °C up to +85 °C
Max. conductor cross-section	2.5 mm², (AWG 26-12)
Max, terminal tightening torque	0.5 Nm

Accessories

Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1803201

Order Number 0.0 0 0.6 / 0 7 \triangle Size 1

Dimensions (mm)

ROBA[®]-SBCplus The safe brake control - for use up to PLe and SIL CL3

Application

The safe brake control ROBA®-SBCplus is used to control and monitor two ROBA-stop® safety brakes, especially in applications, which have to fulfill requirements regarding person protection according to the standards for functional reliability, such as for example ISO 13849 and IEC 62061.

Characteristics:

- Safe electronic switching of two brakes
- Input voltage power circuit 24 48 VDC
- Connection for up to 2 brakes up to 4.5 A / 24 VDC or 2.25 A / 48 VDC (108 W)
- Output voltage (holding voltage) can be selected 6,8,12,24,48 VDC
 - → Power reduction, temperature reduction, electricity costs reduction
- Overexcitation time configurable
- Feedback inputs release monitoring for proximity switch or microswitch
- Monitoring for plausibility of the feedback
 → Error diagnostics of the brake
- Status and error outputs for feedback to the control
- No mechanic contacts for controlling and monitoring
 - → High reliability, no wear, independent of cycle frequency and cycle rate
- Fast ("DC-side") or slow ("AC-side") switch off possible
- Galvanic separation between the control part and the power part
 - → Prevention of EMC issues
- Four integrated functions:
 - Contactor, 24 VDC fast-acting rectifier, safety relay, spark quenching
- Safe holding voltage and overexcitation time
- Safety functions are programmed into the ROBA[®]-SBCplus and only have to be parameterised

 \rightarrow Plausibility check integrated and must not be programmed and validated

 Applicable up to PLe and SIL CL3, Type examination TÜV Süd (German Technical Inspectorate)

Maximum switching reliability

The brake control must safely interrupt the current in the magnetic coil on switching off the brake. The ROBA®-SBCplus module works with wear-free electronic semiconductors and thus achieves almost unlimited switching frequencies and switching reliability.

Safe inner configuration

Amongst other things, the internal diagnostics inspections for short circuits, earth short-circuits and line breaks as well as safe overexcitation for releasing the brake and switching to reduced holding voltage when the brake is opened are the components required for "fail-safe" inner configuration.

Numerous safety functions

Numerous safety functions permit comprehensive error diagnostics. The brake voltage is monitored. An excessively high voltage could dangerously extend the drop-out time on switch-off, if, for example, this were to cause a vertical axis to drop to an unpermittedly low level. The monitoring of the switching times, which influence the braking distance, is therefore another component of error diagnostics.

Safe switching condition monitoring

The signal evaluation of the release monitoring with plausibility check permits a switching condition monitoring of the brake. The plausibility is controlled as follows: If voltage is applied, the brake must be opened after a defined time and vice versa. The switching condition monitoring can be used to reliably prevent the drive starting up against a closed brake. In this way, creeping errors, such as gradually increasing wear, which affects the switching times, can be detected.

ROBA-stop® – Guidelines

Guidelines on the Declaration of Conformity: A conformity evaluation has been carried out for the product (electromagnetic safety brake) in terms of the EU Low Voltage Directive 2014/35/EU. The Declaration of Conformity is laid out in writing in a separate document and can be requested if required.

Guidelines on the EMC Directive (2014/30/EU): The product cannot be operated independently according to the EMC directive. Due to their passive state, brakes are also non-critical equipment according to the EMC. Only after integration of the product into an overall system can this be evaluated in terms of the EMC. For electronic equipment, the evaluation has been verified for the individual product in laboratory conditions, but not in the overall system.

Guidelines on the Machinery Directive (2006/42/EC): The product is a component for installation into machines according to the Machinery Directive 2006/42/EC. The brakes can fulfil the specifications for safety-related applications in coordination with other elements. The type and scope of the required measures result from the machine risk analysis. The brake then becomes a machine component and the machine manufacturer assesses the conformity of the safety device to the directive. It is forbidden to start use of the product until you have ensured that the machine accords with the regulations stated in the directive.

Guidelines on the ATEX Directive: Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. For application of this product in areas where there is a high danger of explosion, it must be classified and marked according to directive 2014/34/EU.

Safety Regulations

Brakes may generate several risks, among others:

During the risk assessment required when designing the machine or system, the dangers involved must be evaluated and removed by taking appropriate protective measures.

To prevent injury or damage, only professionals and specialists are allowed to work on the devices. They must be familiar with the dimensioning, transport, installation, initial operation, maintenance and disposal according to the relevant standards and regulations.

Application Conditions

The catalogue values are guideline values which have been determined in test facilities. It may be necessary to carry out your own tests for the intended application.

When dimensioning the brakes, please remember that installation situations, braking torque fluctuations, permitted friction work, run-in behaviour and wear as well as general ambient conditions can all affect the given values. These factors should therefore be carefully assessed, and alignments made accordingly.

- Mounting dimensions and connection dimensions must be adjusted according to the size of the brake at the place of installation.
- □ The magnetic coils are designed for a relative duty cycle of 100 %, if no other values are stated.
- □ The braking torque is dependent on the present run-in condition of the brake.
- The brakes are only designed for dry running. The torque is lost if the friction surfaces come into contact with oil, grease, water or similar substances or foreign bodies.
- □ Manufacturer-side corrosion protection of the metallic surfaces.
- The rotors may rust up and block in corrosive ambient conditions and/or after long periods of storage.

Ambient temperature-20 °C up to +40 °C

Protection

(mechanical) IP54: When installed, dust-proof and protected against contact as well as against water spray from any direction (dependent on customer-side mounting method).

(electrical) IP54: Dust-proof and protected against contact as well as against water spray from any direction.

IP67 (Type 856.41__): Dust-proof and protected against contact as well as against temporary submersion under water.

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Intended Use

mayr[®]-brakes have been developed, manufactured and tested in compliance with the VDE 0580 standard and in accordance with the EU Low Voltage Directive as electromagnetic components. During installation, operation and maintenance of the product, the standard requirements must be observed. *mayr*[®]-brakes are for use in machines and systems and must only be used in the situations for which they are ordered and confirmed. Using them for any other purpose is not allowed.

Guidelines for Electromagnetic Compatibility (EMC)

In accordance with the EMC directives 2014/30/EU, the individual components produce no emissions. However, functional components e.g. mains-side energisation of the brakes with rectifiers, phase demodulators, ROBA®-switch devices or similar controls can produce disturbance which lies above the allowed limit values.

For this reason it is important to read the Installation and Operational Instructions very carefully and to keep to the EMC directives.

Standards, Directives and Regulations Used

VDE 0580	Electromagnetic devices and
	components, general specifications
2014/35/EU	Low Voltage Directive
CSA C22.2 No. 14-2010	Industrial Control Equipment
UL 508 (Edition 17)	Industrial Control Equipment
EN ISO 12100	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 61000-6-4	Interference emission
EN 61000-6-2	Interference immunity
EN 60204-1	Electrical equipment of machines

Liability

- The information, guidelines and technical data in these documents were up to date at the time of printing. Demands on previously delivered brakes are not valid.
- Liability for damage and operational malfunctions will not be taken if: the Installation and Operational Instructions are ignored or neglected, the brakes are used inappropriately, the brakes are modified, the brakes are worked on unprofessionally and the brakes are handled or operated incorrectly.

Guarantee

- The guarantee conditions correspond with the Chr. Mayr GmbH + Co. KG sales and delivery conditions.
- Mistakes or deficiencies are to be reported to mayr® at once!

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0 Fax: 07 11/45 96 01 10

Hagen Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0 Fax: 0 23 31/78 03 25

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Representatives

Australia

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl Bavaria Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74

Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75

info@mayr.ch

India

Chemnitz Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

France Mayr France S.A.S. Z.A.L. du Minopole

Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA Mayr C

Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0 20/27 13 02 29 nenco@nenco.org

South Korea

Mayr Korea Co. Ltd. 15, Yeondeok-ro 9beon-gil Seongsan-gu 51571 Changwon-si Gyeongsangnam-do. Korea Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com

Japan

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C. Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09 aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet. 🛱